Advertisement

Water, Air, and Soil Pollution

, Volume 98, Issue 3–4, pp 297–316 | Cite as

UNCERTAINTY IN THE ESTIMATION OF CRITICAL LOADS: A PRACTICAL METHODOLOGY

  • Susan K. Zak
  • Keith Beven
  • Brian Reynolds
Article

Abstract

Critical loads of acid deposition for forest soils, ground and surface water resources are calculated utilising a variety of mathematical models. The estimation of the predictive uncertainty inherent in these models is important since the model predictions constitute the cornerstone of the development of emissions abatement policy decisions in Europe and the United Kingdom. The Generalised Likelihood Uncertainty Estimation (GLUE) approach is presented here as a tool for estimating the predictive uncertainty of PROFILE, a steady-state geochemical model that is widely applied within the critical loads community. GLUE is based on Monte Carlo simulation and explicitly recognises the possible equifinality of parameter sets. With this methodology it is possible to make an assessment of the likelihood of a parameter set being an acceptable simulator of a system when model predictions are compared to observed field data. The methodology is applied to a small catchment at Plynlimon, Mid-Wales. The results highlight that there is a large amount of predictive uncertainty associated with the model at the site: three of the six chosen field characteristics lie within the predicted distribution. The study also demonstrates that a wide range of parameter sets exist that give acceptable simulations of site characteristics as well as a broad distribution of critical load values that are consistent with the site data. Additionally, a sensitivity analysis of model parameters is presented.

acid deposition ecosystem GLUE PROFILE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alveteg, M., Sverdrup, H. and Warfvinge, P.: 1995, Water, Air and Soil Pollut. 79, 377.Google Scholar
  2. Andersen, S., Christophersen, N., Mulder, J., Seip, H. M. and Vogt, R. D.: 1990, ‘Aluminium Solubility in the Various Soil Horizons in an Acidified Catchement’, in J. B. Mason (ed.), The Surface Water Acidification Programme, Cambridge, p. 155.Google Scholar
  3. Beven, K.: 1989, Journal of Hydrology 105, 157.Google Scholar
  4. Beven, K. and Binley, A.: 1992, Hydrological Processes 6, 279.Google Scholar
  5. Beven, K.: 1003, Advances in Water Resources 16, 41.Google Scholar
  6. Binley, A. and Beven, K.: 1991, ‘Physically-Based Modelling of Catchment Hydrology: A Likelihood Approach to Reducing Predictive Uncertainty’ in Farmer, D. G. and Rycroft, M. J. (eds.), Computer Modelling in the Environmental Sciences, Conference Papers, Institute of Mathematics and its Application, S. Conf. Series 28, p. 75.Google Scholar
  7. Cosby, B. J., Hornberger, G. M. and Wright, R. F.: 1985, Water Resources Research 21(1), 51.Google Scholar
  8. Chapman, P. J.: 1994, ‘Hydrochemical Processes Influencing Episodic Stream Water Chemistry in a Small Headwater Catchment, Plynlimon, Mid-Wales’, Unpublished Thesis, University of London.Google Scholar
  9. Freer, J., Beven, K. J. and Ambroise, B.: 1996, Water Resources Research (in press).Google Scholar
  10. Goulding, K. W. T. and Blake, L.: 1993, ‘Testing the PROFILE Model on Long-Term Data’, in Proc. Critical Loads: Concepts and Applications, Institute of Terrestrial Ecology, Grange-over-Sands, HMSSO, 28, p. 68.Google Scholar
  11. Hodson, M., Langan, S. and Wilson, M.: 1996, Applied Geochemistry, (in press).Google Scholar
  12. Hornberger, G. M., Cosby, B. J. and Wright, R. F.: 1989, ‘Estimating Uncertainty in Long-Term Reconstruction’, In Kämari, J, and D. F. Brakke (eds.), Regional Acidification Models, p. 279.Google Scholar
  13. Hornnung, M., Reynolds, B. and Hatton, A. A.: 1985, Applied Geography 5, 71.Google Scholar
  14. Hornung, M., Adamson, J. K., Reynolds, B. and Stevens, P. A.: 1986, Journal of the Geological Society 143, 627.Google Scholar
  15. Hornung, M., Bull, K. R., Cresser, M., Hall, J., Langan, S. J., Loveland, P. and Smith, C.: 1995, Environ. Pollut. 90, 301.Google Scholar
  16. Jönsson, C., Warfvinge, P. and Sverdrup, H.: 1995, Water, Air and Soil Pollut. 81, 1.Google Scholar
  17. Nilsson, J. and Grennfelt, P. (ed.): 1988, Critical Loads for Sulphur and Nitrogen, Report from a workshop held at Skokloster, Sweden, 19-24 March, Nordic Council of Ministers.Google Scholar
  18. Reynolds, B., Howard, D. C. and Hornung, M.: 1995, ‘Dynamic and Landscape Modelling of Critical Loads: A Demonstration Project’, Project Report T07072S1, April.Google Scholar
  19. Reynolds, B., Hornung, M. and Hughes, S.: 1989, Hydrol. Sci. J. 34(6), 667.Google Scholar
  20. Romanowicz, P., Beven, K. and Tawn, J: 1994, ‘Evaluation of Predictive Uncertainty in Nonlinear Hydrological Models Using a Bayesian Approach’, in V. Barnett anf K. F. Turkman (eds.), Statistics for the Environment. II Water Issues, Wiley and Sons, Chichester, p. 297.Google Scholar
  21. Spear, R. C. and Hornberger, G. M.: 1980, Water Research 14, 43.Google Scholar
  22. Sverdrup, H. and Warfvinge, P.: 1988, ‘Assessment of Critical Loads of Acid Deposition on Forest Soils’, J. Nilsson and P. Grennfelt (eds.), Critical Loads for Sulphur and Nitrogen, report for a workshop held at Skokloster, Sweden 19-24 March, 1988. Copenhagen, Nordic Council of Ministers, Miljörapport 1988, 15, p. 81.Google Scholar
  23. Sverdrup, H., Warfvinge, P. and Jönsson, C.: 1993a, ‘Critical Loads of Acidity for Forest Soils, Groundwater and First-Order Streams in Sweden’, Proc. Critical Loads: Concepts and Applications, Institute of Terrestrial Ecology, Grange-over-Sands, HMSO, 28, p. 54.Google Scholar
  24. Sverdrup, H., Warfvinge, P., Frogner, T., Haöya, A. O., Johansson, M. and Andersen, B.: 1992a, AMBIO 21(5), 348.Google Scholar
  25. Sverdrup, H., Warfvinge, P., Rabenhorst, M., Janicki, A., Morgan, R. and Bowman, M.: 1992b, Environ. Pollut. 77, 195.Google Scholar
  26. Sverdrup, H., Alveteg, M., Langan, S. and Pacés, T.: 1995, ‘Biogeochemical Modelling of Small Catchments Using PROFILE and SAFE’, in Trudgill, S. (ed.), Solute Modelling in Catchment Systems, Wiley and Sons, Chichester, p. 75.Google Scholar
  27. Sverdrup, H. and Warfvinge, P.: 1995, ‘Effect of Soil Acidification of Growth of Trees and Plants as Expressed by the (Ca+Mg+K)/Al Ratio’, Lund Institute of Technology, Lund, Sweden, Reports in Ecology and Environmental Engineering, 2nd edition.Google Scholar
  28. van Straten, G. and Keesman, K.: 1991, Journal of Forecasting 10, 163.Google Scholar
  29. Warfvinge, P. and Sverdrup, H.: 1992, Water, Air and Soil Pollut. 63, 119.Google Scholar
  30. Warfvinge, P., Falkengren-Grerup, U. and Sverdrup, H.: 1993, Environ. Pollut. 80, 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Susan K. Zak
    • 1
  • Keith Beven
    • 2
  • Brian Reynolds
    • 1
  1. 1.Centre for Research on Environmental Systems and Statistics, Institute of Environmental and Biological SciencesLancaster UniversityLancasterEngland
  2. 2.Institute of Terrestrial EcologyBangorWales

Personalised recommendations