Genetica

, Volume 104, Issue 3, pp 207–214 | Cite as

Balancing selection and MHC

  • Philip W. Hedrick
Article

Abstract

The MHC is highly polymorphic in most vertebrates and the suggested selective mechanisms responsible for the maintenance of this variation are several, including maternal‐fetal interaction, parasite resistance, and negative-assortative mating. Evidence for these mechanisms is reviewed and estimates of the amount of selection in a number of studies are given. Although there is much yet to be understood about the mechanism and extent of balancing selection at MHC, new advances in molecular genetic technology and increasing interest in MHC from many types of biologists promise answers in the near future.

HLA maternal‐fetal interaction negative–assortative mating parasite resistance polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, S.C. & C. Ober, 1993. Genetic variability in the major histocompatibility complex: a review of non-pathogen-mediated selective mechanisms. Yrbk. Phy. Anthrop. 36: 71-89.CrossRefGoogle Scholar
  2. Allsopp, C.E.M., A.V.S. Hill, D. Kwiakowski, A. Hughes, M. Bunce, C.J. Taylor, L. Pazmany, D. Brewster, A.J. McMichael & B.M. Greenwood, 1991. Sequence analysis of HLA-Bw53, a common West African allele, suggests an origin by gene conversion of HLA-B35. Hum. Immunol. 30: 104-109.CrossRefGoogle Scholar
  3. Apanius, V., D. Penn, P.R. Slev & L.R. Ruff, 1997. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17: 179-224.PubMedGoogle Scholar
  4. Belich, M.P., J.A. Madrigal, W.H. Hildebrand, J. Zemmour, R.C. Williams, R. Luz, M.L. Petzl-Erler & P. Parham, 1992. Unusual HLA-B alleles in two tribes of Brazilian Indians. Nature 357: 326-329.PubMedCrossRefGoogle Scholar
  5. Black, F.L. & F.M. Salzano, 1981. Evidence for heterosis in the HLA system. Amer. J. Hum. Genet. 33: 894-899.PubMedGoogle Scholar
  6. Black, F.L. & P.W. Hedrick, 1997. Strong balancing selection at HLA loci: evidence from segregation in South Amerindian families. Proc. Natl. Acad. Sci. 94: 12452-12456.PubMedCrossRefGoogle Scholar
  7. Bodmer, W., 1972. Evolutionary significance of the HL-Asystem. Nature 237: 139-145.PubMedCrossRefGoogle Scholar
  8. Boyce, W.M., P.W. Hedrick, N.E. Muggli-Crockett, S. Kalinowski, M.C.T. Penedo & R.R. Ramey, 1997. Genetic variation of major histocompatibility complex and microsatellite loci: a comparison in bighorn sheep. Genetics 145: 421-433.PubMedGoogle Scholar
  9. Briles, W.E., H.A. Stone & R.K. Cole, 1977. Marek's disease: effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 195: 193-195.PubMedGoogle Scholar
  10. Brown, J.L. & A. Eklund, 1994. Kin recognition and the major histocompatibility complex: an integrative review. Amer. Natur. 143: 435-461.CrossRefGoogle Scholar
  11. Davenport, M.P., C.L. Quinn, R.M. Chicz, B.N. Green, A.C. Willis, W.S. Lane, J.I. Bell & A.V.S. Hill, 1995. Naturally processed peptides from two disease-resistance associated HLA-DR13 alleles show related sequence motifs and the effects of the dimorphism at position 86 of the HLA-DRb chain. Proc. Natl. Acad. Sci. 92: 6567-6571.PubMedCrossRefGoogle Scholar
  12. Doherty, P.C. & R. Zingernagel, 1975. Enhanced immunologic surveillance in mice heterozygous at the H2 complex. Nature 256: 50-52.PubMedCrossRefGoogle Scholar
  13. Edwards, S. & P.W. Hedrick, 1998. Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol. Evol. 13: 305-311.CrossRefGoogle Scholar
  14. Egid, K. & J.L. Brown, 1989. The major histocompatibility complex and female mating preferences in mice. Anim. Behav. 38: 548-550.CrossRefGoogle Scholar
  15. Eklund, A., K. Egid & J.L. Brown, 1991. The major histocompatibility complex and mating preferences of male mice. Anim. Behav. 42: 693-694.CrossRefGoogle Scholar
  16. Hedrick, P.W., 1985. Genetics of Populations. Jones and Bartlett, Boston.Google Scholar
  17. Hedrick, P.W., 1990. Selection at HLA: possible explanations for deficiency of homozygotes. Hum. Hered. 40: 213-220.PubMedCrossRefGoogle Scholar
  18. Hedrick, P.W., 1992. Female choice and variation in the major histocompatibility complex. Genetics 132: 575-581.PubMedGoogle Scholar
  19. Hedrick, P.W., 1994. Evolutionary genetics of the major histocompatibility complex. Amer. Natur. 143: 945-964.CrossRefGoogle Scholar
  20. Hedrick, P.W. & F.L. Black, 1997. HLA and male selection: no evidence in South Amerindians. Amer. J. Hum. Genet. 61: 505-511.PubMedGoogle Scholar
  21. Hedrick, P.W. & T.J. Kim, 1999. Genetics of complex polymorphisms: parasites and maintenance of MHC variation, in Evolutionary Genetics from Molecules to Morphology, edited by R. S. Singh and C. K. Krimbas. Cambridge Univ. Press, New York.Google Scholar
  22. Hedrick, P.W. & E. Murray, 1983. Selection and measures of fitness, pp. 61-104 in The Genetics and Biology of Drosophila, Vol. 3d, edited by M. Ashburner, H. Carson and J. Thompson. Academic Press, New York.Google Scholar
  23. Hedrick, P.W. & K.M. Parker, 1998. MHC variation in the endangered Gila topminnow. Evolution 52: 194-199..CrossRefGoogle Scholar
  24. Hedrick, P.W. & G. Thomson, 1983. Evidence for balancing selection at HLA. Genetics 104: 449-456.PubMedGoogle Scholar
  25. Hedrick, P.W. & G. Thomson, 1988. Maternal-fetal interactions and the maintenance of HLA polymorphism. Genetics 119: 205-212.PubMedGoogle Scholar
  26. Hedrick, P.W., G. Thomson & W. Klitz, 1987. Evolutionary genetics and HLA: another classic example. Biol. J. Linnean Soc. 31: 311-331.Google Scholar
  27. Hedrick, P.W., T.S. Whittam & P. Parham, 1991. Heterozygosity at individual amino sites: extremely high levels for HLA-A and -B genes. Proc. Natl. Acad. Sci. 88: 5897-5901.PubMedCrossRefGoogle Scholar
  28. Hill, A.V.S., 1991. HLA associations with malaria in Africa: some implications for MHC evolution, pp. 403-434 in Molecular Evolution of the Major Histocompatibility Complex, edited by J. Klein and D. Klein. Springer-Verlag, Berlin.Google Scholar
  29. Hill, A.V.S., C.E.M. Allsop, D. Kwiatdowski, N.M. Anstey, P. Twumasi, P.A. Rowe, S. Bennett, D. Brewster, A.J. McMichael & B.M. Greenwood, 1991. CommonWest African HLA antigens are associated with protection from severe malaria. Nature 352: 595-600.PubMedCrossRefGoogle Scholar
  30. Hill, A.V.S., S.N.R. Yates, C.E.M. Allsopp, S. Gupta, S.C. Gilbert, A. Lalvani, M. Aidoo, M. Davenport, & M. Plebanske, 1994. Human leukocyte antigens and natural selection by malaria. Phil. Trans. R. Soc. Lond. B 346: 379-385.Google Scholar
  31. Hogstrand, K. & J. Bohme, 1994. A determination of the frequency of gene conversion in unmanipulated mouse sperm. Proc. Natl. Acad. Sci. 91: 9921-9925.PubMedCrossRefGoogle Scholar
  32. Hughes, A.L. & M. Nei, 1988. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167-179.PubMedCrossRefGoogle Scholar
  33. Hughes, A.L. & M. Nei, 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. 86: 958-962.PubMedCrossRefGoogle Scholar
  34. Hughes, A.L. & M. Nei, 1992. Maintenance of MHC polymorphism. Nature 355: 402-403.PubMedCrossRefGoogle Scholar
  35. Jin, K., T.P. Speed & G. Thomson, 1995. Tests of random mating for a highly polymorphic locus: application to HLA data. Biometrics 51: 1064-1076.PubMedCrossRefGoogle Scholar
  36. Kingman, J.F.C., 1961. A mathematical problem in population genetics. Proc. Camb. Phil. Soc. 57: 574-582.Google Scholar
  37. Lewontin, R.C., L.R. Ginsburg & S.D. Tuljapurkar, 1978. Heterosis as an explanation for large amounts of genic polymorphism. Genetics 88: 149-170.PubMedGoogle Scholar
  38. Mandel, S.P.H., 1970. The equivalence of different sets of stability conditions for multiple allelic systems. Biometrics 26: 840- 845.PubMedCrossRefGoogle Scholar
  39. Markow, T., P.W. Hedrick, K. Zuerlein, J. Danilovs, J. Martin, T. Vyvial & C. Armstrong, 1993. HLA polymorphism in the Havasupai: evidence for balancing selection. Amer. J. Hum. Genet. 53: 943-952.PubMedGoogle Scholar
  40. Ober, C., T. Hyslop, S. Elias, L.R. Weitkamp & W.W. Hauck, 1998. HLA matching and fetal loss: results of a 10-year prospective study. Hum. Reprod. 13: 33-38.PubMedCrossRefGoogle Scholar
  41. Ober, C., L.R. Weitkamp, N. Cox, H. Dytch, D. Kostyu & S. Elias, 1997. HLA and mate choice in humans. Am. J. Hum. Genet. 61: 497-504.PubMedCrossRefGoogle Scholar
  42. Ohta, T., 1991. Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. Proc. Natl. Acad. Sci. 88: 6716-6720.PubMedCrossRefGoogle Scholar
  43. Okoye, R.C., E. Williams, A. Alonso, P. Doyle, H. Awad, C. Navarrete, D. Jaraquemada, W.E.R. Ollier & H. Festenstein, 1985. HLA polymorphisms in Nigerians. Tissue Antigens 25: 142-155.PubMedCrossRefGoogle Scholar
  44. Parham, P., E.J. Adams & K.L. Arnett, 1995. The origins of HLA-A, B, C polymorphism. Immunol. Rev. 143: 141-181.PubMedCrossRefGoogle Scholar
  45. Parham, P. & T. Ohta, 1996. Population biology of antigen presentation by MHC class I molecules. Science 272: 67-74.PubMedGoogle Scholar
  46. Parham, P., K.L. Arnett, E.J. Adams, A.-M. Little, K. Tees, L.D. Barber, S.G.E. Marsh, T. Ohta, T. Markow & M.-L. Petzl-Erler, 1997. Episodic evolution and turnover of HLA-B alleles in the indigenous populations of the new world. Tissue Antigens 50: 219-232.PubMedCrossRefGoogle Scholar
  47. Parker, K.M., R.J. Sheffer & P.W. Hedrick, 1999. Molecular variation and evolutionary significant units in the endangered Gila topminnow. Cons. Biol. 13: 108-116.CrossRefGoogle Scholar
  48. Partridge, L., 1988. The rare-male effect: What is its evolutionary significance? Phil. Trans. R. Soc. Lond. B 319: 525-539.Google Scholar
  49. Paterson, S. & J.M. Pemberton, 1998. No evidence for major histocompatibility complex-dependent mating patterns in a free-living ruminant population. Proc. R. Soc. Biol. 264: 1813-1819.CrossRefGoogle Scholar
  50. Plachy, J., C.-L. Chen & K. Hala, 1992. Biology of the chicken MHC (B complex). Crit. Rev. Immunol. 12: 47-79.PubMedGoogle Scholar
  51. Potts, W.K., C.J. Manning & E.K. Wakeland, 1991. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352: 619-621.PubMedCrossRefGoogle Scholar
  52. Potts, W.K., C.J. Manning & E.K. Wakeland, 1994. The role of infectious disease, inbreeding and mating preferences in maintaining MHC genetic diversity: an experimental test. Phil. Trans. R. Soc. Lond. B 346: 369-378.Google Scholar
  53. Ralls, K., J.D. Ballou & A. Templeton, 1988. Estimates of lethal equivalents and the cost of inbreeding in mammals. Cons. Biol. 2: 185-193.CrossRefGoogle Scholar
  54. Ralls, K., P.H. Harvey & A.M. Lyles, 1986. Inbreeding in natural population of birds and mammals, pp. 25-56 in Conservation Biology: The Science of Scarcity and Diversity, edited by M.E. Soule. Sinauer Assoc., Sunderland, MA.Google Scholar
  55. Ritte, U., E. Neufeld, C. O'hUigin, F. Figeroa & J. Klein, 1991. Origins of H-2 polymorphism in the house mouse: II. Characterization of amodel population and evidence for heterozygous advantage. Immunogenetics 34: 164-173.PubMedCrossRefGoogle Scholar
  56. Rosenberg, L.T., D. Cooperman & R. Payne, 1983. HLA and mate selection. Immunogenetics 17: 89-93.PubMedCrossRefGoogle Scholar
  57. Satta, Y., C. O'hUigin, N. Takahata, & J. Klein, 1994. Intensity of natural selection at the major histocompatibility complex loci. Proc. Natl. Acad. Sci. 91: 7184-7188.PubMedCrossRefGoogle Scholar
  58. Spencer, H.G. & R.W. Marks, 1988. The maintenance of singlelocus polymorphism: I. Numerical studies of a viability selection model. Genetics 120: 605-613.PubMedGoogle Scholar
  59. Takahata, N. & M. Nei, 1990. Allelic geneology under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124: 967-978.PubMedGoogle Scholar
  60. Takahata, N., Y. Satta & J. Klein, 1992. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130: 925-938.PubMedGoogle Scholar
  61. Thomas, M.L., J.H. Harger, D.K. Wagener, B.S. Rabin & T.J. Gill, 1985. HLA sharing and spontaneous abortion in humans. Amer. J. Obstet. Gynec. 151: 1053-1058.PubMedGoogle Scholar
  62. Thursz, M.R., H.C. Thomas, B.M. Greenwood & A.V.S. Hill, 1997. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat. Genet. 17: 11-12.PubMedCrossRefGoogle Scholar
  63. von Schantz, T., H. Wittzell, G. Goransson, M. Grahn & K. Persson, 1996. MHC genotype and male ornamentation: genetic evidence for the Hamilton-Zuk model. Proc. R. Soc. Lond. B 263: 265-271.Google Scholar
  64. Watkins, D.I., S.N. McAdam, X. Liu, C.R. Strang, E.L. Milford, C.G. Levine, T.L. Garber, A.L. Dogon, C.I. Lord, S.H. Ghim, G.M. Troup, A.L. Hughes & N.L. Letvin, 1992. Newrecombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 357: 329-333.PubMedCrossRefGoogle Scholar
  65. Yamazaki, K., G.K. Beauchamp, D. Kupniewski, J. Bard, L. Thomas & E.A. Boyse, 1988. Familial imprinting determines H-2 selective mating preferences. Science 240: 1331-1332.PubMedGoogle Scholar
  66. Zangenberg, G., M.-M. Huang, N. Arnheim & H. Erlich, 1995. New HLA-DPB1 alleles generated by interallelic gene conversion detected by analysis of sperm. Natur. Genet. 10: 407-414.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Philip W. Hedrick
    • 1
  1. 1.Department of BiologyArizona State UniversityTempe, AZUSA

Personalised recommendations