Advertisement

Glycoconjugate Journal

, Volume 16, Issue 2, pp 109–123 | Cite as

Insect cells as hosts for the expression of recombinant glycoproteins

  • Friedrich Altmann
  • Erika Staudacher
  • Iain B.H. Wilson
  • Leopold März
Article

Abstract

Baculovirus-mediated expression in insect cells has become well-established for the production of recombinant glycoproteins. Its frequent use arises from the relative ease and speed with which a heterologous protein can be expressed on the laboratory scale and the high chance of obtaining a biologically active protein. In addition to Spodoptera frugiperda Sf9 cells, which are probably the most widely used insect cell line, other mainly lepidopteran cell lines are exploited for protein expression. Recombinant baculovirus is the usual vector for the expression of foreign genes but stable transfection of - especially dipteran - insect cells presents an interesting alternative. Insect cells can be grown on serum free media which is an advantage in terms of costs as well as of biosafety. For large scale culture, conditions have been developed which meet the special requirements of insect cells.

With regard to protein folding and post-translational processing, insect cells are second only to mammalian cell lines. Evidence is presented that many processing events known in mammalian systems do also occur in insects. In this review, emphasis is laid, however, on protein glycosylation, particularly N-glycosylation, which in insects differs in many respects from that in mammals. For instance, truncated oligosaccharides containing just three or even only two mannose residues and sometimes fucose have been found on expressed proteins.

These small structures can be explained by post-synthetic trimming reactions. Indeed, cell lines having a low level of N-acetyl-β-glucosaminidase, e.g. Estigmene acrea cells, produce N-glycans with non-reducing terminal N-acetylglucosamine residues. The Trichoplusia ni cell line TN-5B1-4 was even found to produce small amounts of galactose terminated N-glycans. However, there appears to be no significant sialylation of N-glycans in insect cells. Insect cells expressed glycoproteins may, though, be α1,3-fucosylated on the reducing-terminal GlcNAc residue. This type of fucosylation renders the N-glycans on one hand resistant to hydrolysis with PNGase F and on the other immunogenic. Even in the absence of α1,3-fucosylation, the truncated N-glycans of glycoproteins produced in insect cells constitute a barrier to their use as therapeutics. Attempts and strategies to “mammalianise” the N-glycosylation capacity of insect cells are discussed.

insect cells baculovirus N-glycans insect glycoproteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hasemann CA, Capra JD (1990) Proc Natl Acad Sci USA 87: 3942–46.Google Scholar
  2. 2.
    Reis U, Blum B, Von Specht B-U, Domdey H, Collins J (1992). BioTechnology 10: 910–12.Google Scholar
  3. 3.
    Závodzky P, Cseh S (1996) Cytechnology 20: 279–88.Google Scholar
  4. 4.
    Roy P, Bishop DH, LeBlois H, Erasmus BJ (1994) Vaccine 12: 805–11.Google Scholar
  5. 5.
    Koch G, van Roozelaar DJ, Verschueren CA, van der Eb AJ, Noteborn MH (1995) Vaccine 13: 763–70.Google Scholar
  6. 6.
    Baumert TF, Ito S, Wong DT, Liang TJ (1998) J Virol 72(5): 3827–36.Google Scholar
  7. 7.
    Belyaev AS, Hails RS, Roy P (1995) Gene 156: 229–33.Google Scholar
  8. 8.
    Fabian JR, Kimball SR, Jefferson LS (1998) Protein Expr Purif 13: 16–22.Google Scholar
  9. 9.
    Ng GY, George SR, Zastawny RL, Caron M, Bouvier M, Dennis M, O'Dowd BF (1993) Biochemistry 32: 11727–33.Google Scholar
  10. 10.
    Bernard AR, Kost TA, Overton L, Cavegn C, Young J, Bertrand M, Yahia-Cherif Z, Chabert C, Mills A (1994) Cytotechnology 15: 139–44.Google Scholar
  11. 11.
    Satoh M, Miyamoto C, Terashima H, Tachibana Y, Wada K, Watanabe T, Hayes AE, Gentz R, Furuichi, Y (1997) Eur J Biochem 249: 803–11.Google Scholar
  12. 12.
    Shotkoski F, Zhang HG, Jackson MB, French-Constant RH (1996) FEBS Lett 380: 257–62.Google Scholar
  13. 13.
    Buckingham SD, Matsuda K, Hosie AM, Baylis HA, Squire MD, Lansdell SJ, Millar NS, Sattelle B (1996) Neuropharmacology 35: 1393–401.Google Scholar
  14. 14.
    Ernst W, Grabherr R, Wegner D, Borth N, Grassauer A, Katinger H (1998) Nucleic Acids Res 26: 1718–23.Google Scholar
  15. 15.
    März L, Altmann F, Staudacher E, Kubelka V (1995) In proteins (Montreuil J, Schachter H, Vliegenthart JFG, eds) pp 543–63. Amsterdam: Elsevier.Google Scholar
  16. 16.
    Altmann F (1996) Trends Glycosci Glycotechn 8: 101–14.Google Scholar
  17. 17.
    Altmann F (1997) Glycocon J 14: 643–46.Google Scholar
  18. 18.
    McCarroll L, King LA (1997) Curr Opin Biotechnol 8: 590–94.Google Scholar
  19. 19.
    Hink WF, Thomsen DR, Davidson DJ, Meyer AL, Castellino FJ (1991) Biotechnol Prog 7: 9–14.Google Scholar
  20. 20.
    Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985) Nature 315: 592–94.Google Scholar
  21. 21.
    Korth KL, Levings CS (1993) Proc Natl Acad Sci USA 90: 3388–92.Google Scholar
  22. 22.
    Kulakosky PC, Hughes PR, Wood HA (1998) Glycobiology 8: 741–45.Google Scholar
  23. 23.
    Davies AH (1994) Nat Biotechnol 12: 47–50.Google Scholar
  24. 24.
    Luckov VA (1995) In Baculovirus Expression Systems and Biopesticides (Shuler ML, Wood HA, Granados RR, Hammer DA, eds) pp 51–90. New York: John Wiley Sons.Google Scholar
  25. 25.
    Jones I, Morikawa Y (1996) Curr Opin Biotechnol 7: 512–16.Google Scholar
  26. 26.
    Heldens JGM, Kester HA, Zuidema D, Vlak JM (1997) J Virol Methods 68: 57–63.Google Scholar
  27. 27.
    Huybrechts R, Vulsteke V, Poels J, Lauwers E, Vanden Broeck J, De Loof A. (1997) Belg J Zool 127: 35–45.Google Scholar
  28. 28.
    Ernst W, Grabherr R, Katinger H (1994) Nucleic Acids Res 22: 2855–56.Google Scholar
  29. 29.
    Janknecht R, de Martynoff G, Lou J, Hipskind RA, Nordheim A, Stunnenberg HG (1991) Proc Natl Acad Sci USA 88: 8972–76.Google Scholar
  30. 30.
    Zhu A, Wang ZK (1996) Eur J Biochem 235: 332–37.Google Scholar
  31. 31.
    Schmidt M, Tuominen N, Johansson T, Weiss SA, Keinanen K, Oker-Blom C (1998) Protein Expr Purif 12: 323–30.Google Scholar
  32. 32.
    Mahiouz DL, Aichinger G, Haskard DO, George AJT (1998) J Immunol Methods 212: 149–60.Google Scholar
  33. 33.
    Hsu TA, Eden JJ, Betenbaugh MJ (1994) Ann NY Acad Sci 721: 208–17.Google Scholar
  34. 34.
    Hsu TA, Eiden JJ, Bourgarel P, Meo T, Betenbaugh MJ (1994) Protein Expr Purif 5: 595–603.Google Scholar
  35. 35.
    Hsu TA, Betenbaugh MJ (1997) Biotechnol Prog 13: 96–104.Google Scholar
  36. 36.
    Whiteley EM, Hsu TA, Betenbaugh MJ (1997) Biotechnol Bioeng 56: 106–16.Google Scholar
  37. 37.
    Lenhard T, Reiländer H (1997) Biochem Biophys Res Commun 238: 823–30.Google Scholar
  38. 38.
    Jarvis DL, Finn EE (1996) Nat Biotechnol 14: 1288–92.Google Scholar
  39. 39.
    Hollister JR, Shaper JH, Jarvis DL (1998) Glycobiology 8: 473–80.Google Scholar
  40. 40.
    Agathos SN (1996) Cytotechnology 20: 173–89.Google Scholar
  41. 41.
    Maruniak JE (1996) Cytotechnology 20: 145–48.Google Scholar
  42. 42.
    Schmid G (1996) Cytotechnology 20: 43–56.Google Scholar
  43. 43.
    Schlaeger EJ (1996) Cytotechnology 20: 57–70.Google Scholar
  44. 44.
    Rhodes DJ (1996) Cytotechnology 20: 291–97.Google Scholar
  45. 45.
    Stacey G, Possee R (1996) Cytotechnology 20: 299–304.Google Scholar
  46. 46.
    Chalmers JJ (1996) Cytotechnology 20: 163–71.Google Scholar
  47. 47.
    Taticek RA, Lee CWT, Shuler ML (1994) Curr Opin Biotechnol 5: 165–74.Google Scholar
  48. 48.
    Jäger V (1996) Cytotechnology 20: 191–98.Google Scholar
  49. 49.
    Tramper J, Vlak JM, De Gooijer CD (1996) Cytotechnology 20: 221–29.Google Scholar
  50. 50.
    Chan LCL, Greenfield PF, Reid S (1998) Biotechnol Bioeng 59: 178–88.Google Scholar
  51. 51.
    Chung IS, Taticek RA, Shuler ML (1993) Biotechnol Prog 9: 675–78.Google Scholar
  52. 52.
    Bernard AR, Lusti-Narasimhan M, Radford KM, Hale RS, Sebille E, Graber P (1996) Cytotechnology 20: 239–57.Google Scholar
  53. 53.
    Licari PJ, Jarvis DL, Bailey JE (1993) Biotechnol Prog 9: 146–52.Google Scholar
  54. 54.
    Veit M, Ponimaskin E, Baiborodin S, Gelderblom HR, Schmidt MF (1996) Arch Virol 141: 2009–17.Google Scholar
  55. 55.
    Osterrieder N, Wagner R, Pfeffer M, Kaaden O-R (1994) J Gen Virol 75: 2041–46.Google Scholar
  56. 56.
    Toki D, Sarkar M, Yip B, Reck F, Joziasse D, Fukuda M, Schachter H, Brockhausen I (1997) Biochem J 325: 63–9.Google Scholar
  57. 57.
    Soldatova LN, Crameri R, Gmachl M, Kemeny DM, Schmidt M, Weber M, Mueller UR (1998) J Allergy Clin Immunol 101: 691–98.Google Scholar
  58. 58.
    Klenk HD (1996) Cytotechnology 20: 139–44.Google Scholar
  59. 59.
    Yeh J, Seals JR, Murphy CI, van Halbeek H, Cummings RD (1993) Biochemistry 32: 11087–99.Google Scholar
  60. 60.
    Lopez M, Coddeville B, Langridge J, Plancke Y, Sautière P, Chaabihi H, Chirat F, Harduin-Lepers A, Cerutti M, Verbert A, Delannoy P (1997) Glycobiology 7: 635–51.Google Scholar
  61. 61.
    Voss T, Ergülen E, Ahorn H, Kubelka V, Sugiyama K, Maurer-Fogy I, Glössl J (1993) Eur J Biochem 217: 913–19.Google Scholar
  62. 62.
    Walravens K, Matheise JP, Knott I, Coppe P, Collard A, Didembourg C, Dessy F, Kettmann R, Letesson JJ (1996) Arch Virol 141: 2313–26.Google Scholar
  63. 63.
    Sugyiama K, Ahorn H, Maurer-Fogy I, Voss T (1993) Eur J Biochem 217: 921–27.Google Scholar
  64. 64.
    Thomsen DR, Post LE, Elhammer ÅP (1990) J Cell Biochem 43: 67–9.Google Scholar
  65. 65.
    Chen W, Shen Q-X, Bahl OP (1991) J Biol Chem 266: 4081–87.Google Scholar
  66. 66.
    Wathen MW, Aeed PA, Elhammer AP (1991) Biochemistry 30: 2863–68.Google Scholar
  67. 67.
    Grabenhorst E, Hofer B, Nimtz M, Jäger V, Conradt HS (1993) Eur J Biochem 215: 189–97.Google Scholar
  68. 68.
    Kramerov AA, Mikhaleva EA, Rozovsky YM, Pochechueva TV, Baikova NA, Arsenjeva EL, Gvozdev VA (1997) Insect Biochem Mol Biol 27: 513–21.Google Scholar
  69. 69.
    Lopez M, Gazon M, Juliant S, Plancke Y, Leroy Y, Strecker G, Cartron JP, Bailly P, Cerutti M, Verbert A, Delannoy P (1998) J Biol Chem 273: 33644–51.Google Scholar
  70. 70.
    Kelly WG, Hart GW (1989) Cell 57: 243–51.Google Scholar
  71. 71.
    Ku N-O, Bishr Omary M (1994) Exp Cell Res 211: 24–35.Google Scholar
  72. 72.
    Davies A, Morgan BP (1993) Biochem J 295: 889–96.Google Scholar
  73. 73.
    Page MJ, Hall A, Rhodes S, Skinner RH, Murphy V, Sydenham M, Lowe PN (1989) J Biol Chem 264: 19147–54.Google Scholar
  74. 74.
    Kuroda K, Veit M, Klenk HD (1991) Virology 180: 159–65.Google Scholar
  75. 75.
    Linder ME, Middleton P, Hepler JR, Taussig R, Gilman AG, Mumby SM (1993) Proc Natl Acad Sci USA 90: 3675–79.Google Scholar
  76. 76.
    Funke C, Becker S, Dartsch H, Klenk H-D, Mühlberger E (1995) Virology 208: 289–97.Google Scholar
  77. 77.
    Veit M, Nurnberg B, Spicher K, Harteneck C, Ponimaskin E, Schultz G, Schmidt MF (1994) FEBS Lett 339: 160–64.Google Scholar
  78. 78.
    Reverey H, Veit M, Ponimaskin E, Schmidt MF (1996) J Biol Chem 271: 23607–610.Google Scholar
  79. 79.
    Schärer CG, Naim HY, Koblet H (1993) Arch Virol 132: 237–54.Google Scholar
  80. 80.
    Roberts TE, Faulkner P (1989) Virology 172: 377–81.Google Scholar
  81. 81.
    Zhao Y, Sane DC (1993) Arch Biochem Biophys 304: 434–42.Google Scholar
  82. 82.
    Becker GW, Miller JR, Kovacevic S, Ellis RM, Louis AI, Small JS, Stark DH, Roberts EF, Wyrick TK, Hoskins J, Chiou XG, Sharp JD, McClure DB, Riggin RM, Kramer RM (1994) BioTechnology 12: 69–74.Google Scholar
  83. 83.
    Cahoreau C, Garnier L, Djiane J, Devauchelle G, Cerutti M (1994) FEBS Lett 350: 230–34.Google Scholar
  84. 84.
    März L, Kühne C, Michl H (1983) Toxicon 21: 893–96.Google Scholar
  85. 85.
    Santacruz-Toloza L, Huang Y, John SA, Papazian DM (1994) Biochemistry 33: 5607–613.Google Scholar
  86. 86.
    Shinkai A, Shinoda K, Sasaki K, Morishita Y, Nishi T, Matsuda Y, Takahashi I, Anazawa H (1997) Protein Expr Purif 10: 379–85.Google Scholar
  87. 87.
    Varki A (1993) Glycobiology 3: 97–130.Google Scholar
  88. 88.
    Imperiali B, Rickert KW (1995) Proc Natl Acad Sci USA 92: 97–101.Google Scholar
  89. 89.
    Parodi AJ (1998) Braz J Med Biol Res 31: 601–14.Google Scholar
  90. 90.
    Trombetta ES, Helenius A (1998) Curr Opin Struct Biol 8: 587–92.Google Scholar
  91. 91.
    Katanosaka K, Tokunaga F, Kawamura S, Ozaki K (1998) FEBS Lett 424: 149–54.Google Scholar
  92. 92.
    Parker CG, Fessler LI, Nelson RE, Fessler JH (1995) EMBO J 14: 1294–303.Google Scholar
  93. 93.
    Davis TR, Shuler ML, Granados RR, Wood HA (1993) In Vitro Cell Dev Biol 29A: 842–46.Google Scholar
  94. 94.
    Hsieh P, Robbins PW (1984) J Biol Chem 259: 2375–82.Google Scholar
  95. 95.
    Parker GF, Williams PJ, Butters TD, Roberts DB (1991) FEBS Lett 290: 58–60.Google Scholar
  96. 96.
    Ryan RO, Anderson DR, Grimes WJ, Law JH (1985) Arch Biochem Biophys 243: 115–24.Google Scholar
  97. 97.
    Jarvis DL, Summers MD (1989) Mol Cell Biol 9: 214–23.Google Scholar
  98. 98.
    Kuroda K, Geyer H, Geyer R, Doerfler W, Klenk H-D (1990) Virology 174: 418–29.Google Scholar
  99. 99.
    Williams PJ, Wormald MR, Dwek RA, Rademacher TW, Parker GF, Roberts DR (1991) Biochim Biophys Acta Gen Subj 1075: 146–53.Google Scholar
  100. 100.
    Kubelka V, Altmann F, Kornfeld G, März L (1994) Arch Biochem Biophys 308: 148–57.Google Scholar
  101. 101.
    Kubelka V, Altmann F, März L (1995) Glycoconj J 12: 77–83.Google Scholar
  102. 102.
    Wagner R, Liedtke S, Kretzschmar E, Geyer H, Geyer R, Klenk HD (1996) Glycobiology 6: 165–75.Google Scholar
  103. 103.
    Ogonah OW, Freedman RB, Jenkins N, Patel K, Rooney BC (1996) BioTechnology 14: 197–202.Google Scholar
  104. 104.
    Hsu TA, Takahashi N, Tsukamoto Y, Kato K, Shimada I, Masuda K, Whiteley EM, Fan JQ, Lee YC, Betenbaugh MJ (1997) J Biol Chem 272: 9062–70.Google Scholar
  105. 105.
    Roberts DB, Mulvany WJ, Dwek RA, Rudd PM (1998) Eur J Biochem 253: 494–98.Google Scholar
  106. 106.
    Ioffe E, Stanley P (1994) Proc Natl Acad Sci USA 91: 728–32.Google Scholar
  107. 107.
    Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD (1994) EMBO J 13: 2056–65.Google Scholar
  108. 108.
    Kretzschmar E, Geyer R, Klenk H-D (1994) Biol Chem Hoppe Seyler 375: 323–27.Google Scholar
  109. 109.
    Aeed PA, Elhammer ÅP (1994) Biochemistry 33: 8793–97.Google Scholar
  110. 110.
    Manneberg M, Friedlein A, Kurth H, Lahm HW, Fountoulakis M (1994) Protein Sci 3: 30–38.Google Scholar
  111. 111.
    Hogeland KE Jr, Deinzer ML (1994) Biol Mass Spectrom 23: 218–24.Google Scholar
  112. 112.
    James DC, Freedman RB, Hoare M, Ogonah OW, Rooney BC, Larionov OA, Dobrovolsky VN, Lagutin OV, Jenkins N (1995) Biotechnology (NY) 13: 592–96.Google Scholar
  113. 113.
    James DC, Goldman MH, Hoare M, Jenkins N, Oliver RW, Green BN, Freedman RB (1996) Protein Sci 1996 5: 331–40.Google Scholar
  114. 114.
    Kulakosky PC, Shuler ML, Wood HA (1998) In Vitro Cell Dev Biol Anim 34: 101–8.Google Scholar
  115. 115.
    Jäger V, Chico E, Ackermann M., Nimtz N, Grabenhorst E, Conradt HS (1998) Proc Int GlycoBioTechnology Symp Braunschweig: L13Google Scholar
  116. 116.
    Ishihara H, Takahashi N, Oguri S, Tejima S (1979) J Biol Chem 254: 10715–19.Google Scholar
  117. 117.
    Tretter V, Altmann F, März L (1991) Eur J Biochem 199: 647–52.Google Scholar
  118. 118.
    Altmann F, Schweiszer S, Weber C (1995) Glycoconj J 12: 84–93.Google Scholar
  119. 119.
    Staudacher E, Altmann F, März L, Kamerling JP, Hård K, Vliegenthart JFG (1992) Glycoconj J 9: 82–85.Google Scholar
  120. 120.
    Kubelka V, Altmann F, Staudacher E, Tretter V, März L, Hård K, Kamerling JP, Vliegenthart JFG (1993) Eur J Biochem 213: 1193–204.Google Scholar
  121. 121.
    Staudacher E, Altmann F, Glössl J, März L, Schachter H, Kamerling JP, Hård K, Vliegenthart JFG (1991) Eur J Biochem 199: 745–51.Google Scholar
  122. 122.
    Staudacher E, Kubelka V, März L (1992) Eur J Biochem 207: 987–93.Google Scholar
  123. 123.
    Staudacher E, März L (1998) Glycoconj J 15: 355–60.Google Scholar
  124. 124.
    Van Die I, Van Tetering A, Bakker H, Van den Eijnden DH, Joziasse DH (1996) Glycobiology 6: 157–64.Google Scholar
  125. 125.
    Wilson IBH, Altmann F (1998) Glycoconj J 15: 203–6.Google Scholar
  126. 126.
    Van Kuik JA, Hoffmann RA, Mutsaers JHGM, van Halbeek H, Kamerling JP, Vliegenthart JFG (1986) Glycoconj J 3: 27–34.Google Scholar
  127. 127.
    Hase S, Koyama S, Daiyasu H, Takemoto H, Hara S, Kobayashi Y, Kyogoku Y, Ikenaka T (1986) J Biochem 100: 1–10.Google Scholar
  128. 128.
    Prenner C, Mach L, Glössl J, März L (1992) Biochem J 284: 377–80.Google Scholar
  129. 129.
    Tretter V, Altmann F, Kubelka V, März L, Becker WM(1993) Int Arch Allergy Immunol 102: 259–66.Google Scholar
  130. 130.
    Wilson IBH, Harthill JE, Mullin N, Ashford D, Altmann F (1998) Glycobiology 8: 651–61.Google Scholar
  131. 131.
    Wilson IBH, Altmann F (1998) Glycoconjugate J 15: 1055–1070.Google Scholar
  132. 132.
    Aalberse RC, van Ree R (1997) Clin Rev Allergy Immunol 15: 375–87.Google Scholar
  133. 133.
    Kurosaka A, Yano A, Itoh N, Kuroda Y, Nakagawa T, Kawasaki T (1991) J Biol Chem 266: 4168–72.Google Scholar
  134. 134.
    Jan LY, Jan YN (1982) Proc Natl Acad Sci USA 79: 2700–704.Google Scholar
  135. 135.
    Snow PM, Patel NH, Harrelson AL, Goodman CS (1987) J Neurosci 7: 4137–44.Google Scholar
  136. 136.
    Wang X, Sun B, Yasuyama K, Salvaterra PM (1994) Insect Biochem Mol Biol 24: 233–42.Google Scholar
  137. 137.
    Gorczyca MG, Phillis RW, Budnik V (1994) Development 120: 2143–52.Google Scholar
  138. 138.
    Schachter H (1991) Glycobiology 1: 453–61.Google Scholar
  139. 139.
    Altmann F, Kornfeld G, Dalik T, Staudacher E, Glössl J (1993) Glycobiology 3: 619–25.Google Scholar
  140. 140.
    Velardo MA, Bretthauer RK, Boutaud A, Reinhold B, Reinhold VN, Castellino FJ (1993) J Biol Chem 268: 17902–907.Google Scholar
  141. 141.
    Altmann F, März L (1995) Glycoconj J 12: 150–55.Google Scholar
  142. 142.
    Ren JX, Castellino FJ, Bretthauer RK (1997) Biochem J 324: 951–56.Google Scholar
  143. 143.
    Altmann F, Schwihla H, Staudacher E, Glössl J, März L (1995) J Biol Chem 270: 17344–49.Google Scholar
  144. 144.
    Wagner R, Geyer H, Geyer R, Klenk HD (1996) J Virol 70: 4103–108.Google Scholar
  145. 145.
    Davis TR, Wood HA (1995). In Vitro Cell Dev Biol Anim 31: 659–63.Google Scholar
  146. 146.
    Roth J, Kempf A, Reuter G, Schauer R, Gehring WJ (1992) Science 256: 673–75.Google Scholar
  147. 147.
    Van den Eijnden DH, Bakker H, Neeleman AP, Van den Nieuwenhof IM, Van Die I (1997) Biochem Soc Trans 25: 887–93.Google Scholar
  148. 148.
    Hård K, Van Doorn JM, Thomas-Oates JE, Kamerling JP, Van der Horst DJ (1993) Biochemistry 32: 766–75.Google Scholar
  149. 149.
    Munier-Lehmann H, Mauxion F, Hoflack B (1996) Biochem Soc Trans 24: 133–36.Google Scholar
  150. 150.
    Kerscher S, Albert S, Wucherpfenning D, Heisenberg M, Schneuwly S (1995) Dev Biol 168: 613–26.Google Scholar
  151. 151.
    Kawar Z, Herscovics A, Jarvis DL (1997) Glycobiology 7: 433–43.Google Scholar
  152. 152.
    Foster JM, Yudkin B, Lockyer AE, Roberts DB (1995) Gene 154: 183–86.Google Scholar
  153. 153.
    Jarvis DL, Bohlmeyer DA, Liao YF, Lomax KK, Merkle RK, Weinkauf C, Moremen KW (1997) Glycobiology 7: 113–27.Google Scholar
  154. 154.
    Kumar R, Yang J, Eddy RL, Byers MG, Shows TB, Stanley P (1992) Glycobiology 2: 383–93.Google Scholar
  155. 155.
    Liu Y, Dunn GS, Aronson NN Jr (1996) Glycobiology 6: 527–36.Google Scholar
  156. 156.
    Zen KC, Choi HK, Krishnamachary N, Muthukrishnan S, Kramer KJ (1996) Insect Biochem Mol Biol 26: 435–44.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Friedrich Altmann
    • 1
  • Erika Staudacher
    • 1
  • Iain B.H. Wilson
    • 1
  • Leopold März
    • 1
  1. 1.Institut für Chemie der Universität für Bodenkultur WienWien

Personalised recommendations