Journal of Statistical Physics

, Volume 101, Issue 3–4, pp 819–841 | Cite as

Models of the Small World

  • M. E. J. Newman

Abstract

It is believed that almost any pair of people in the world can be connected to one another by a short chain of intermediate acquaintances, of typical length about six. This phenomenon, colloquially referred to as the “six degrees of separation,” has been the subject of considerable recent interest within the physics community. This paper provides a short review of the topic.

small world networks disordered systems graph theory social networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. L. A. Adamic and B. A. Huberman, Power-law distribution of the world wide web, Science 287:2115a (2000).Google Scholar
  2. R. Albert and A.-L. Barabási, Topology of evolving networks: Local events and universality. Available as cond-mat-0005085 (2000).2 Google Scholar
  3. R. Albert, H. Jeong, and A.-L. Barabási, Diameter of the world-wide web, Nature 401:130–131 (1999).Google Scholar
  4. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of behavior of small-world networks, Proc. Natl. Acad. Sci. 97:11149–11152 (2000).Google Scholar
  5. R. M. Anderson and R. M. May, Susceptible-infectious-recovered epidemic models with dynamic partnerships, J. Math. Biol. 33:661–675 (1995).Google Scholar
  6. P. Bak and K. Sneppen, Punctuated equilibrium and criticality in a simple model of evolution, Phys. Rev. Lett. 71:4083–4086 (1993).Google Scholar
  7. A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286:509–512 (1999).Google Scholar
  8. A.-L. Barabási, R. Albert, and H. Jeong, Mean-field theory for scale-free random networks, Physica A 272:173–187 (1999).Google Scholar
  9. A.-L. Barabási, R. Albert, H. Jeong, and G. Bianconi, Response to “Power-law distribution of the world wide web,” Science 287:2115a (2000).Google Scholar
  10. A. Barrat, Comment on “Small-world networks: Evidence for a crossover picture.” Available as cond-mat-9903323 (1999).Google Scholar
  11. A. Barrat and M. Weigt, On the properties of small-world network models, Europ. Phys. J. B 13:547–560 (2000).Google Scholar
  12. M. Barthélémy and L. A. N. Amaral, Small-world networks: Evidence for a crossover picture, Phys. Rev. Lett. 82:3180–3183 (1999).Google Scholar
  13. B. Bollobás, Random Graphs (Academic Press, New York, 1985).Google Scholar
  14. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, A. Tomkins, and J. Wiener, Graph structure in the web, in Proceedings of the Ninth International World-Wide Web Conference (2000).Google Scholar
  15. R. Das, M. Mitchell, and J. P. Crutchfield, A genetic algorithm discovers particle-based computation in cellular automata, in Parallel Problem Solving in Nature, Y. Davidor, H. P. Schwefel, and R. Manner, eds. (Springer, Berlin, 1994).Google Scholar
  16. M. A. De Menezes, C. F. Moukarzel, and T. J. P. Penna, First-order transition in small-world networks, Europhys. Lett. 50:574–578 (2000).Google Scholar
  17. S. N. Dorogovtsev and J. F. F. Mendes, Exactly solvable small-world network, Europhys. Lett. 50:1–7 (2000).Google Scholar
  18. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Structure of growing networks. Available as cond-mat-0004434 (2000).Google Scholar
  19. P. Erdös and A. Rényi, On random graphs, Publicationes Mathematicae 6:290–297 (1959).Google Scholar
  20. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet topology, Comp. Comm. Rev. 29:251–262 (1999).Google Scholar
  21. M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26:2507–2513 (1982).Google Scholar
  22. M. Gladwell, Six degrees of Lois Weisberg, The New Yorker 74(41):52–64 (1998).Google Scholar
  23. J. Guare, Six Degrees of Separation: A Play (Vintage, New York, 1990).Google Scholar
  24. S. Jespersen, I. M. Sokolov, and A. Blumen, Small-world Rouse networks as models of cross-linked polymers. Available as cond-mat-0004392 (2000a).Google Scholar
  25. S. Jespersen, I. M. Sokolov, and A. Blumen, Relaxation properties of small-world networks. Available as cond-mat-0004214 (2000b).Google Scholar
  26. R. Kasturirangan, Multiple scales in small-world graphs. Massachusetts Institute of Technology AI Lab Memo 1663. Also cond-mat-9904055 (1999).Google Scholar
  27. M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proc. Roy. Soc. B 266:859–867 (1999).Google Scholar
  28. D. Kirby and P. Sahre, Six degrees of Monica, New York Times (February 21, 1998).Google Scholar
  29. A. Kleczkowski and B. T. Grenfell, Mean-field-type equations for spread of epidemics: The “small-world” model, Physica A 274:355–360 (1999).Google Scholar
  30. J. Kleinberg, Navigation in a small world, Nature 406:845 (2000).Google Scholar
  31. M. Kocken, The Small World (Ablex, Norwood, New Jersey, 1989).Google Scholar
  32. C. Korte and M. Milgram, Acquaintance linking between white and negro populations: Application of the small world problem, J. Pers. Soc. Psy. 15:101–118 (1970).Google Scholar
  33. P. L. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of growing random networks. Available as cond-mat-0005139 (2000).Google Scholar
  34. M. Kretschmar and M. Morris, Measures of concurrency in networks and the spread of infectious disease, Mathematical Biosciences 133:165–195 (1996).Google Scholar
  35. R. V. Kulkarni, E. Almaas, and D. Stroud, Exact results and scaling properties of small-world networks, Phys. Rev. E 61:4268–4271 (2000).Google Scholar
  36. R. V. Kulkarni, E. Almaas, and D. Stroud, Evolutionary dynamics in the Bak-Sneppen model on small-world networks. Available as cond-mat-9905066 (1999).Google Scholar
  37. L. F. Lago-Fernández, R. Huerta, F. Corbacho, and J. A. Sigüenza, Fast response and temporal coherent oscillations in small-world networks, Phys. Rev. Lett. 84:2758–2761 (2000).Google Scholar
  38. N. Mathias and V. Gopal, Small-worlds: How and why. Available as cond-mat-0002076 (2000).Google Scholar
  39. S. Milgram, The small world problem, Psychology Today 2:60–67 (1967).Google Scholar
  40. R. Monasson, Diffusion, localization and dispersion relations on small-world lattices, Europ. Phys. J. B 12:555–567 (1999).Google Scholar
  41. E. W. Montroll and M. F. Shlesinger, On 1/f noise and other distributions with long tails, Proceedings of the National Academy of Sciences 79:3380–3383 (1982).Google Scholar
  42. C. Moore and M. E. J. Newman, Epidemics and percolation in small-world networks, Phys. Rev. E 61:5678–5682 (2000a).Google Scholar
  43. C. Moore and M. E. J. Newman, Exact solution of site and bond percolation on small-world networks. Phys. Rev. E 62:7059–7064 (2000b).Google Scholar
  44. C. F. Moukarzel, Spreading and shortest paths in systems with sparse long-range connections, Phys. Rev. E 60:6263–6266 (1999).Google Scholar
  45. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, Oxford, 1999).Google Scholar
  46. M. E. J. Newman, C. Moore, and D. J. Watts, Mean-field solution of the small-world network model, Phys. Rev. Lett. 84:3201–3204 (2000).Google Scholar
  47. M. E. J. Newman and D. J. Watts, Renormalization group analysis of the small-world network model, Phys. Lett. A 263:341–346 (1999a).Google Scholar
  48. M. E. J. Newman and D. J. Watts, Scaling and percolation in the small-world network model, Phys. Rev. E 60:7332–7342 (1999b).Google Scholar
  49. S. A. Pandit and R. E. Amritkar, Random spread on the family of small-world networks. Available as cond-mat-0004163 (2000).Google Scholar
  50. S. Redner, Random multiplicative processes: An elementary tutorial, Amer. J. Phys. 58: 267–273 (1990).Google Scholar
  51. S. Redner, How popular is your paper? An empirical study of the citation distribution, European Phys. J. B 4:131–134 (1998).Google Scholar
  52. T. Remes, Six Degrees of Rogers Hornsby, New York Times (August 17, 1997).Google Scholar
  53. L. Sattenspiel and C. P. Simon, The spread and persistence of infectious diseases in structured populations, Mathematical Biosciences 90:367–383 (1988).Google Scholar
  54. A. Scala, L. A. N. Amaral, and M. Barthélémy, Small-world networks and the conformation space of a lattice polymer chain. Available as cond-mat-0004380 (2000).Google Scholar
  55. D. Sornette and R. Cont, Convergent multiplicative processes repelled from zero: Power laws and truncated power laws, J. de Physique 17:431–444 (1997).Google Scholar
  56. B. Tjaden and G. Wasson, Available on the internet at http://www.cs.virginia.edu/oracle/ (1997).Google Scholar
  57. T. Valente, Network Models of the Diffusion of Innovations (Hampton Press, Cresskill, New Jersey, 1995).Google Scholar
  58. A. Wagner and D. Fell, The Small World Inside Large Metabolic Networks (University of New Mexico, 2000), preprint.Google Scholar
  59. T. Walsh, in Proceedings of the 16th International Joint Conference on Artificial Intelligence (Stockholm, 1999).Google Scholar
  60. S. Wasserman and K. Faust, Social Network Analysis (Cambridge University Press, Cambridge, 1994).Google Scholar
  61. D. J. Watts, Small Worlds (Princeton University Press, Princeton, 1999).Google Scholar
  62. D. J. Watts and S. H. Strogatz, Collective dynamics of “small-world” networks, Nature 393:440–442 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • M. E. J. Newman
    • 1
  1. 1.Santa Fe InstituteSanta FeNew Mexico

Personalised recommendations