International Journal of Primatology

, Volume 22, Issue 1, pp 5–24

Regulation by Photoperiod of Seasonal Changes in Body Mass and Reproductive Function in Gray Mouse Lemurs (Microcebus murinus): Differential Responses by Sex

  • M. Perret
  • F. Aujard


Microcebus murinus exhibits highly seasonal biological rhythms to cope with extreme seasonality in availability of resources. To study the role of daylength on seasonal changes in body mass and reproductive function, we exposed male and female gray mouse lemurs to natural, constant, or alternating light cycles for 2 years under constant environmental conditions. When exposed to either constant short (SD: 10 h light/day), long (LD: 14 h light/day), or intermediate (ID: 12 h light/day) daylength, males and females maintained a constant body mass with no spontaneous cyclic variation. We only observed typical seasonal body mass changes in subjects exposed to alternating periods of SD and LD, the weight gain being triggered by SD, whereas weight loss occurred under LD. Reproductive activity in females proceeded from an endogenous rhythm that was expressed under constant daylengths. In contrast, changes in reproductive activity in males depended on daylength variation. In both sexes, SD and LD have direct inhibitory or stimulatory effects on reproductive activity. In females, daylength regulates breeding season by synchronizing an endogenous sexual rhythm with the season, whereas in males, the perception of a critical photoperiod is used to determine the subsequent onset or arrest of their breeding season. These sexual differences in the effect of daylength could be related to sex-specific differences in reproductive constraints.

seasonal rhythms photoperiod sexual function body mass primate Microcebus murinus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aujard, F., Boissy, I., and Claustrat, B. (1998). Melatonin secretion in a nocturnal prosimian primate: effect of photoperiod and aging. In Touitou, Y. (ed.), Biological Clocks. Mechanisms and Applications, Elsevier Science, Amsterdam, pp. 337–340.Google Scholar
  2. Aujard, F., Perret, M., and Vannier, G. (1998). Thermoregulatory responses to variations of photoperiod and ambient temperature in the male lesser mouse lemur: a primitive or advanced adaptive character? J. Comp. Physiol. B 168: 540–548.Google Scholar
  3. Bartness, T. J. (1996). Photoperiod, sex, gonadal steroids, and housing density affect body fat in hamsters. Physiol. Behav. 60: 517–529.Google Scholar
  4. Bartness, T. J., and Wade, G. N. (1989). Photoperiodic control of seasonal body weight in hamsters. Neurosci. Biobehav. Rev. 9: 599–612.Google Scholar
  5. Beasley, L. J., and Zucker, I. (1986). Circannual cycles of body mass, food intake and reproductive condition in male pallid bats. Physiol. Behav. 38: 697–702.Google Scholar
  6. Boissin J., and Canguilhem, B. (1988). Les rythmes circannuels chez les Mammifères. Arch. Int. Physiol. Biochem. 94: 289–345.Google Scholar
  7. Brockmann, D. K. (1994). Reproduction and mating system of Verreaux's Sifaka, Propithecus verreauxi, at Beza Mahafaly, Madagascar. PhD thesis, Yale University, New Haven, CT.Google Scholar
  8. Bronson, F. H. (1989). Mammalian Reproductive Biology, University of Chicago Press, Chicago.Google Scholar
  9. Bronson, F. H. (1998). Seasonal variation in human reproduction: environmental factors. Quart. Rev. Biol. 70: 141–164.Google Scholar
  10. Charles-Dominique, P., and Hladik, C. M. (1971). Le lépilemur du sud de Madagascar: écologie, alimentation et vie sociale. Terre et Vie 1: 3–66.Google Scholar
  11. Chik, C. L., Osborne, F. X., Libe, A. E., Booth, J. D., Renquist, D., and Merriam, G. R. (1991). Photoperiod-driven changes in reproductive function in male rhesus monkeys. J. Clin. Endocrinol. Metabol. 74: 1068–1074.Google Scholar
  12. Craven, R. P., and Clarke, J. R. (1986). Gonadal and gonadotrophin secretion in the male vole (Microtus agrestis) after an abrupt change in photoperiod. J. Reprod. Fert. 76: 513–518.Google Scholar
  13. Curlewis, J. D., and Loudon, A. S. I. (1989). The role of refractoriness to long daylength in the annual reproductive cycle of the female Bennett's wallaby (Macropus rufogriseus rufogriseus). J. Exp. Zool. 252: 200–206.Google Scholar
  14. Dark, J., and Zucker, I. (1986). Photoperiodic regulation of body mass and fat reserves in the meadow vole. Physiol. Behav. 38: 851–854.Google Scholar
  15. Delgadillo, J. A., Leboeuf, B., and Chemineau, P. (1993). Maintenance of sperm production in bucks during a third year of short photoperiodic cycles. Reprod. Nut. Dev. 33: 609–617.Google Scholar
  16. Ellison, G. T. H., Skinner, J. D., and Haim, A. (1992). The relative importance of photoperiod and temperature as cues for seasonal acclimation in pouched mice (Saccostomus campestris) from southern africa. J. Comp. Physiol. B 162: 740–746.Google Scholar
  17. Fietz, J. (1998). Body mass in wild Microcebus murinus over the dry season. Folia Primatol. 34: 221–244.Google Scholar
  18. Fiezt, J. (1999). Mating system of Microcebus murinus. Am. J. Primatol. 48(2): 127–133.Google Scholar
  19. Foerg, R. (1982). Reproduction in Cheirogaleus medius. Folia Primatol. 38: 108–121.Google Scholar
  20. Follet, B. K., and Pearce-Kelly, A. (1990). Photoperiodic control of the termination of reproduction in japanese quail (Coturnix coturnix japonica). Proc. R. Soc. Lond. B 242: 225–230.Google Scholar
  21. Gorman, M. R., and Zucker, I. (1995). Seasonal adaptations of Siberian hamsters. Pattern of changes in daylength controls annual testicular and body weight rhythms. Biol. Reprod. 53: 116–125.Google Scholar
  22. Hladik, A. (1980). The dry forest of the west coast of Madagascar: Climate, phenology and food available for prosimians. In Charles-Dominique, P., Cooper, H. M., Hladik, A., Hladik, C. M., Pages, E., Pariente, G., Petter-Rousseaux, A., Petter, J. J., and Schilling, A. (eds.), Nocturnal Malagasy Primates, Academic Press, New York, pp. 1–40.Google Scholar
  23. Kappeler, P. M., and Ganzhorn, J. U. (1993). Lemur Social Systems and Their Ecological Basis, Plenum Press, New York.Google Scholar
  24. Keverne, E. B. (1987). Processing of environmental stimuli and primate reproduction. J. Zool. 213: 345–408.Google Scholar
  25. Kriegsfeld, L. J., and Nelson, R. J. (1996). Gonadal and photoperiodic influences on body mass regulation in adult male and female prairie voles. Am. J. Physiol. 270R: 1013–1018.Google Scholar
  26. Malpaux, B., Robinson, J. E., Wayne, N. L., Karsch, F. J. (1988). Regulation of the onset of the breeding season of the ewe: Importance of long days and of an endogenous reproductive rhythm. J. Endocrinol. 122: 269–278.Google Scholar
  27. Martin, R. D. (1973). A review of the behaviour and ecology of the lesser mouse lemur (Microcebus murinus). In Michael, R. P., and Crooks, J. H. (eds.), Comparative Ecology and Behaviour of Primates, Academic Press, London, pp. 1–68.Google Scholar
  28. Michener, G. R. (1998). Sexual differences in reproductive effort of richardson's ground squirrels. J. Mammal 79: 1–19.Google Scholar
  29. Nagy, T. M., and Negus, N. C. (1993). Energy acquisition and allocation in male collared lemmings (Dicrostonyx groenlandicus): Effects of photoperiod, temperature and diet quality. Physiol. Zool. 66: 537–560.Google Scholar
  30. Nicholls, T. J., Goldsmith, A. R., and Dawson, A. (1988). Photorefractoriness in birds and comparison with mammals. Physiol. Rev. 68: 133–176.Google Scholar
  31. O'Callaghan, D., Karsch, F. J., Boland, M. P., and Roche, J. F. (1991). Role of short days in timing the onset and duration of reproductive activity in ewes under artificial photoperiods. Biol. Reprod. 44: 23–28.Google Scholar
  32. O'Callaghan, D., Karsch, F. J., Boland, M. P., Hanrahan, J. P., and Roche, J. F. (1992). Variation in the timing of the reproductive season among breeds of sheep in relation to differences in photoperiodic synchronization of an endogenous rhythm. J. Reprod. Fert. 96: 443–452.Google Scholar
  33. O'Jile, J. R., and Bartness, T. J. (1992). Effects of thyroxine on the photoperiodic control of energy balance and reproductive status in siberian hamsters. Physiol. Behav. 52: 267–270.Google Scholar
  34. Ogilvie, K. M., and Stetson, M. H. (1990).The timing of gonadal refractoriness in the female turkish hamster (Mesocricetus branbti) is not dependent on the timing of gonadal regression. Biol. Reprod. 42: 787–791.Google Scholar
  35. Overdoff, D. J., Strait, S. G., and Telo, A. (1997). Seasonal variation in activity and diet in a small-bodied folivorous primate, Hapalemur griseus, in southeastern Madagascar. Am. J. Primatol. 43: 211–223.Google Scholar
  36. Pages-Feuillade, E. (1988). Modalités de l'occupation de l'espace et relations interindividuelles chez un prosimien nocturne malgache (Microcebus murinus). Folia Primatol. 50: 204–220.Google Scholar
  37. Pereira, M. E. (1993). Seasonal adjustment of growth rate and adult body weight in ringtailed lemurs. In Kappeler, P. M., and Ganzhorn, J. U. (eds.), Lemur Social Systems and Their Ecological Basis, Plenum Press, New York, pp. 205–222.Google Scholar
  38. Perret, M. (1980). Influence de la captivité et du groupement social sur la physiologie du Microcébe (Microcebus murinus, Cheirogaleinae, Primates). Doctoral thesis, University Paris XI.Google Scholar
  39. Perret, M. (1992). Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol. 59: 1–25.Google Scholar
  40. Perret, M. (1996). Manipulation of sex ratio at birth by urinary cues in a prosimian primate. Behav. Ecol. Sociobiol. 38: 259–266.Google Scholar
  41. Perret, M., and Predine, J. (1984). Effects of long-term grouping on plasma corticol levels in Microcebus murinus (Prosimii). Horm. Behav. 18: 346–358.Google Scholar
  42. Perret, M., Aujard, F., and Vannier, G. (1998). Influence of daylength on metabolic rate and daily water loss in the male prosimian primate Microcebus murinus. Comp. Biochem. Physiol. A 119: 981–989.Google Scholar
  43. Petter, J. J., Albignac, R., and Rumpler, Y. (1977). Mammifères Lémuriens (Primates, Prosimiens). In Orstom-CNRS (eds.), Faune de Madagascar, Vol. 44, Paris, pp. 1–514.Google Scholar
  44. Petter-Rousseaux, A. (1975). Activité sexuelle de Microcebus murinus soumis à des régimes photopériodiques expérimentaux. Ann. Biol. Anim. Biophys. 15: 503–508.Google Scholar
  45. Petter-Rousseaux, A. (1979). Age of Microcebus murinus at the onset of testicular development. Preliminary observations on photoperiod effect. Ann. Biol. Anim. Biochem. Biophys. 19: 1801–1806.Google Scholar
  46. Petter-Rousseaux, A. (1980). Seasonal activity rhythms, reproduction and body weight variations in five sympatric nocturnal prosimians in simulated light and climatic conditions. In Charles-Dominique, P., Cooper, H. M., Hladik, A., Hladik, C. M., Pages, E., Pariente, G., Petter-Rousseaux, A., Petter, J. J., and Schilling, A. (eds.), Nocturnal Malagasy Primates, Academic Press, New York, pp. 137–152.Google Scholar
  47. Petter-Rousseaux, A. (1984). Annual variations in the plasma thyroxine level in Microcebus murinus. Gen. Comp. Endocr. 55: 405–409.Google Scholar
  48. Plant, T. M. (1988). Puberty in Primates. In Knobil, E., and Neil, J. (eds.), The Physiology of Reproduction, Raven Press, New York, pp. 1763–1788.Google Scholar
  49. Rolf, H. J., and Fisher, K. (1996). Serum testosterone, 5 alpha-dihydrotestosterone and different sex characteristics in male fallow deer (Cervus dama): A long-term experiment with accelerated photoperiod. Comp. Biochem. Physiol. A 115: 207–221.Google Scholar
  50. Rowe, N. (1996). The Pictorial Guide to the Living Primates, Pogonias Press, New York.Google Scholar
  51. Schlatt, S., De Geyter, M., Kliesch, S., Nieschlag, E., and Bergmann, M. (1995). Spontaneous recrudescence of spermatogenesis in the photoinhibited male Djungarian Hamster, Phodopus sungorus. Biol. Reprod. 53: 1169–1177.Google Scholar
  52. Schmid, J., and Kappeler, P. M. (1998). Fluctuating sexual dimorphism and differential hibernation by sex in a primate, the gray mouse lemur (Microcebus murinus). Behav. Ecol. Sociobiol. 43: 125–132.Google Scholar
  53. Sorg, J.-P., and Rohner, U. (1996). Climate and phenology of the dry deciduous forest of the Kirindy forest. Primate Report 46: 57–80.Google Scholar
  54. Stanger, K. F., Coffman, B. S., and Izard, M. K. (1995). Reproduction in coquerel's dwarf lemur (Mirza coquereli). Am. J. Primatol. 36: 223–237.Google Scholar
  55. Steger, R. W., and Bartke, A. (1991). Temporal sequence of neuroendocrine events associated with the transfert of male golden hamsters from a stimulatory to a nonstimulatory photoperiod. Biol. Reprod. 44: 76–82.Google Scholar
  56. SYSTAT. (1997). New Statistics, SPSS, Inc., Chicago, IL, 303 pp.Google Scholar
  57. Turek, F. W., and van Cauter, E. (1988). Rhythms in reproduction. In Knobil, E., Neil, J. D., Greenwald, G. S., Markert, C. L., and Pfaff, D. W. (eds.), The Physiology of Reproduction, Raven Press, New York, pp. 1789–1800.Google Scholar
  58. Van Horn, R. N., and Eaton, G. G. (1976). Reproductive physiology and behaviour in Prosimians. In Doyle, G. A., and Martin, R. D. (eds.), The Study of Prosimian Behaviour, Academic Press, New York, pp. 79–122.Google Scholar
  59. Wayne, N. L., Malpaux, B. M., and Karsch, F. J. (1990). Photoperiodic requirements for timing the onset and duration of the breeding season in the ewe. J. Comp. Physiol. A 166: 835–842.Google Scholar
  60. Woodfill, C. J., Robinson, J. E., Malpaux, B. M., and Karsch, F. J. (1991). Synchronization of the circannual reproductive rhythms of the ewe by discrete photoperiodic signals. Biol. Reprod. 45: 110–121.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • M. Perret
    • 1
  • F. Aujard
    • 1
  1. 1.UMR 8571—Laboratoire d'Ecologie GénéraleMuséum National d'Histoire NaturelleBrunoy

Personalised recommendations