International Journal of Theoretical Physics

, Volume 39, Issue 12, pp 2755–2760 | Cite as

Entangled Quantum States

  • Willi-Hans Steeb
  • Yorick Hardy


Entangled quantum states are an important component of quantum computingtechniques such as quantum error correction, dense coding, and quantumteleportation. We determine the requirements for a state in the Hilbert space C9to be entangled and a solution to the corresponding factorization problem if thisis not the case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steeb, W.-H. (1997). Matrix Calculus and Kronecker Product with Applications and C++ Programs, World Scientific, Singapore.Google Scholar
  2. 2.
    Steeb, W.-H. (1998). Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics, Kluwer, Dordrecht.Google Scholar
  3. 3.
    Preskill, J., Quantum information and computation, ph229.Google Scholar
  4. 4.
    Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., and Wootters, W. K., Mixed state entanglement and quantum error correction, Scholar
  5. 5.
    Shi Tan Kiat, Steeb, W.-H., and Hardy, Y. (2000). SymbolicC++: An Introduction toComputer Algebra Using Object-Oriented Programming, 2nd ed. Springer-Verlag, London.Google Scholar
  6. 6.
    Horodecki, M., Horodecki, P., and Horodecki, R., Separability of mixed states: Necessary and sufficient conditions, Scholar
  7. 7.
    Peres, A., Quantum entanglement: Criteria and collective tests, Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Willi-Hans Steeb
    • 1
  • Yorick Hardy
    • 1
  1. 1.International School for Scientific ComputingRand Afrikaans UniversityAuckland ParkSouth Africa

Personalised recommendations