Advertisement

Journal of Optimization Theory and Applications

, Volume 107, Issue 3, pp 615–626 | Cite as

On Sensitivity in Linear Multiobjective Programming

  • L. V. Thuan
  • D. T. Luc
Article

Abstract

In this paper, we prove that, if the data of a linear multiobjectiveprogramming problem are smooth functions of a parameter, then in theparameter space there is an open dense subset where the efficient solutionset of the problem can be locally represented as a union of some faces whosevertices and directions are smooth functions of the parameter.

linear multiobjective programming efficient solutions sensitivity smooth representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naccache, P.H., Stability in Multicriteria Optimization, Journal of Mathematical Analysis and Applications, Vol. 68, pp. 441–453, 1979.Google Scholar
  2. 2.
    Penot, J. P., and Sterna-Karwat, A., Parametrized Multicriteria Optimization: Continuity and Closedness of Optimal Multifunctions, Journal of Mathematical Analysis and Applications, Vol. 120, pp. 150–168, 1986.Google Scholar
  3. 3.
    Tanino, T., and Sawaragi, Y., Stability of Nondominated Solutions in Multicriteria Decision Making, Journal of Optimization Theory and Applications, Vol. 30, pp. 229–254, 1980.Google Scholar
  4. 4.
    Luc, D. T., Theory of Vector Optimization, Springer Verlag, Berlin, Germany, 1989.Google Scholar
  5. 5.
    Luc, D. T., Lucchetti, R., and Malivert, C., Convergence of the Ef.cient Sets, Set-Valued Analysis, Vol. 2, pp. 207–218, 1994.Google Scholar
  6. 6.
    Sawaragi, Y., Nakayama, H., and Tanino, H., Theory of Multi-Objective Optimization, Academic Press, New York, NY, 1985.Google Scholar
  7. 7.
    Dolecki, S., and Malivert, C., Stability of Ef.cient Sets: Continuity of Mobile Polarities, Nonlinear Analysis: Theory, Methods and Applications, Vol. 12, pp. 1461–1486, 1988.Google Scholar
  8. 8.
    Attouch, H. and Riahi, H., Stability Results for Ekeland's ε-Variational Principle and Cone Extremal Solutions, Mathematics of Operations Research, Vol. 18, pp. 173–201, 1993.Google Scholar
  9. 9.
    Bank, B., Guddat, J., Klatte, Kummer, B., and Tammer, K., Nonlinear Parametric Optimization, Academic Verlag, Berlin, Germany, 1982.Google Scholar
  10. 10.
    Fiacco, A. V., Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, NY, 1983.Google Scholar
  11. 11.
    Gauvin, J., and Dubeau, F., Differential Properties of the Marginal Function in Mathematical Programming, Mathematical Programming Study, Vol. 19, pp. 101–119, 1982.Google Scholar
  12. 12.
    Outrata, J. V., On Generalized Gradients on Optimization Problems with Set-Valued Constraints, Mathematics of Operations Research, Vol. 15, pp. 626–639, 1990.Google Scholar
  13. 13.
    Aubin, J. P., and Frankowska, H., Set-Valued Analysis, Birkhäuser, Boston, Massachusetts, 1990.Google Scholar
  14. 14.
    Robinson, S. M., An Implicit-Function Theorem for a Class of Nonsmooth Functions, Mathematics of Operations Research, Vol. 16, pp. 292–304, 1991.Google Scholar
  15. 15.
    Levy, A. B., and Rockafellar, R. T., Sensitivity Analysis of Solutions to Generalized Equations, Transactions of the American Mathematical Society, Vol. 345, pp. 661–671, 1994.Google Scholar
  16. 16.
    Morduchovich, B., Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings, Journal of Mathematical Analysis and Applications, Vol. 183, pp. 250–288, 1994.Google Scholar
  17. 17.
    Luc, D. T., and Dien, P. H., Differentiable Selection of the Optimal Solution in Parametric Linear Programming, Proceedings of the American Mathematical Society, Vol. 125, pp. 883–892, 1997.Google Scholar
  18. 18.
    Luc, D. T., Smooth Representation of a Parametric Polyhedral Convex Setwit h Application to Sensitivity in Optimization, Proceedings of the American Mathematical Society, Vol. 125, pp. 555–567, 1997.Google Scholar
  19. 19.
    Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • L. V. Thuan
    • 1
  • D. T. Luc
    • 2
    • 3
  1. 1.Hanoi Institute of MathematicsHanoiVietnam
  2. 2.University of AvignonAvignonFrance
  3. 3.Hanoi Institute of MathematicsHanoiVietnam

Personalised recommendations