Journal of Optimization Theory and Applications

, Volume 107, Issue 3, pp 559–571 | Cite as

Controllability of Second-Order Differential Inclusions in Banach Spaces with Nonlocal Conditions

  • M. Benchohra
  • S. K. Ntouyas
Article

Abstract

In this paper, we establish sufficient conditions for the controllability ofsecond-order differential inclusions in Banach spaces with nonlocalconditions. We rely on a fixed-point theorem for condensing maps due toMartelli.

nonlocal conditions mild solutions evolution controllability fixed points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balachandran, K., Balasubramaniam, P., and Dauer, J. P., Controllability of Nonlinear Integrodifferential Systems in BanachSpace, Journal of Optimization Theory and Applications, Vol. 84, pp. 83–91, 1995.Google Scholar
  2. 2.
    Han, H. K., and Park, J. Y., Boundary Controllability of Differential Equations with Nonlocal Condition, Journal of Mathematical Analysis and Applications, Vol. 230, pp. 241–250, 1999.Google Scholar
  3. 3.
    Byszewski, L., Theorems about the Existence and Uniqueness of Solutions of a Semilinear Evolution Nonlocal Cauchy Problem, Journal of Mathematical Analysis and Applications, Vol. 162, pp. 494–505, 1991.Google Scholar
  4. 4.
    Balachandran, K., and Chandrasekaran, M., Existence of Solutions of a Delay-Differential Equation with Nonlocal Condition, Indian Journal of Pure and Applied Mathematics, Vol. 27, pp. 443–449, 1996.Google Scholar
  5. 5.
    Balachandran, K., and Ilamaran, S., Existence and Uniqueness of Mild and Strong Solutions of a Semilinear Evolution Equation withNonlocal Condition, Indian Journal of Pure and Applied Mathematics, Vol. 25, pp. 411–418, 1994.Google Scholar
  6. 6.
    Ntouyas, S. K., and Tsamatos, P. C., Global Existence for Semilinear Evolution Equations withNonlocal Conditions, Journal of Mathematical Analysis and Applications, Vol. 210, pp. 679–687, 1997.Google Scholar
  7. 7.
    Ntouyas, S. K., and Tsamatos, P. C., Global Existence for Second-Order Semilinear Ordinary and Delay Integrodifferential Equations with Nonlocal Conditions, Applicable Analysis, Vol. 67, pp. 245–257, 1997.Google Scholar
  8. 8.
    Ntouyas, S. K., Global Existence Results for Certain Second-Order Delay Integrodifferential Equations with Nonlocal Conditions, Dynamic Systems and Applications, Vol. 7, pp. 415–426, 1998.Google Scholar
  9. 9.
    Martelli, M., A Rothe Type Theorem for Noncompact Acyclic-Valued Map, Bollettino della Unione Mathematica Italiana, Vol. 4, pp. 70–76, 1975.Google Scholar
  10. 10.
    Yosida, K., Functional Analysis, 6th Edition, Springer Verlag, Berlin, Germany, 1980.Google Scholar
  11. 11.
    Deimling, K., Multivalued Differential Equations, Walter de Gruyter, Berlin, Germany, 1992.Google Scholar
  12. 12.
    Hu, S., and Papageorgiou, N., Handbook of Multivalued Analysis, Kluwer, Dordrecht, Holland, 1997.Google Scholar
  13. 13.
    Banas, J., and Goebel, K., Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, NY, 1980.Google Scholar
  14. 14.
    Goldstein, J. K., Semigroups of Linear Operators and Applications, Oxford University Press, New York, NY, 1985.Google Scholar
  15. 15.
    Heikkila, S., and LAkshmikantham, V., Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, NY, 1994.Google Scholar
  16. 16.
    Fattorini, O., Ordinary Differential Equations in Linear Topological Spaces, I, Journal of Differential Equations, Vol. 5, pp. 72–105, 1968.Google Scholar
  17. 17.
    Fattorini, O., Ordinary Differential Equations in Linear Topological Spaces, II, Journal of Differential Equations, Vol. 6, pp. 50–70, 1969.Google Scholar
  18. 18.
    Travis, C. C., and Webb, G. F., Second-Order Differential Equations in Banach Spaces, Proceedings of the International Symposium on Nonlinear Equations in Abstract Spaces, Academic Press, New York, NY, pp. 331–361, 1978.Google Scholar
  19. 19.
    Travis, C. C., and Webb, G. F., Cosine Families and Abstract Nonlinear Second-Order Differential Equations, Acta Mathematica Hungarica, Vol. 32, pp. 75–96, 1978.Google Scholar
  20. 20.
    Lasota, A., and Opial, Z., An Application of the Kakutani–Ky-Fan Theorem in the Theory of Ordinary Differential Equations, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, Vol. 13, pp. 781–786, 1965.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • M. Benchohra
    • 1
  • S. K. Ntouyas
    • 2
  1. 1.Department of MathematicsUniversity of Sidi Bel AbbesSidi Bel AbbesAlgeria
  2. 2.Department of MathematicsUniversity of IoanninaIoanninaGreece

Personalised recommendations