Glycoconjugate Journal

, Volume 16, Issue 2, pp 147–159 | Cite as

Enzymatic synthesis of nucleotide sugars

  • Thomas Bülter
  • Lothar Elling

Abstract

The present review gives a survey on the biosynthetic pathways of nucleotide sugars which are important for the in vitro synthesis of mammalian glycoconjugates. With respect to the use of these enzymes in glycotechnology the availability as recombinant enzymes from different sources, the large-scale synthesis of nucleotide sugars and their in situ regeneration in combination with glycosyltransferases are summarized and evaluated.

enzymatic synthesis nucleotide sugars ADP Adenosine 5′9-diphosphate CDP Cytidine 5′9-diphosphate CMP Cytidine 5′9-monophosphate CMP-Neu5Ac Cytidine 5′9-monophospho-N-acetyl-β-D-neuraminic acid CTP Cytidine 5′9-triphosphate dTDP 2′9-deoxythymidine 5′9-diphosphate dUDP 2′9-deoxyuridine 5′9-diphosphate EMR enzyme membrane reactor Fru D-fructose Fru-6-P D-fructose 6-phosphate Fuc L-fucose Fuc-1-P β-L-fucose 1-phosphate Gal D-galactose Gal-1-P α-D-galactose 1-phosphate GalN D-galactosamine GalN-1-P α-D-galactosamine 1-phosphate GalNAc N-acetyl-D-galactosamine GalNAc-1-P N-acetyl-α-D-galactosamine 1-phosphate GDP Guanosine 5′9-diphosphate GDP-6-d-4-k-L-Gal Guanosine 5′9-diphospho-6-deoxy-4-keto-β-L-galactose GDP-6-d-4-k-Man Guanosine 5′9-diphospho-6-deoxy-4-keto-α-D-mannose GDP-Fuc Guanosine 5′9-diphospho-β-L-fucose GDP-Fuc PP Guanosine 5′9-diphospho-β-L-fucose pyrophosphorylase GDP-Man Guanosine 5′9-diphospho-α-D-mannose GDP-Man DHy GDP-mannose-4,6-dehydratase (EC 4.2.1.47) GDP-Man PP GDP-man pyrophosphorylase (EC 2.7.7.13) Glc-1-P D-glucose 1-phosphate Glc-6-P D-glucose 6-phosphate GlcA-1-P α-D-glucuronic acid 1-phosphate GlcN D-glucosamine GlcN-1-P α-D-glucosamine 1-phosphate GlcN-6-P D-glucosamine 6-phosphate GlcNAc N-acetyl-D-glucosamine GlcNAc-1-P N-acetyl-α-D-glucosamine 1-phosphate GlcNAc-6-P N-acetyl-D-glucosamine 6-phosphate GlmU glucosamine uridyltransferase GTP Guanosine 5′9-triphosphate LacNAc N-acetyllactosamine Lex Lewis X antigen Man D-mannose Man-1-P α-D-mannose 1-phosphate Man-6-P D-mannose 6-phosphate ManNAc N-acetyl-D-mannose ManNAc-6-P N-acetyl-D-mannose 6-phosphate NAD1 nicotinamide adenine dinucleotide NADH nicotinamide adenine dinucleotide hydride NADP1 nicotinamide adenine dinucleotide phosphate NADPH nicotinamide adenine dinucleotide phosphate hydride NAS N-acetoxysuccinimide Neu5Ac N-acetylneuraminic acid Neu5Ac-9-P N-acetylneuraminic acid 9-phosphate NeuAc aldolase N-acetylneuraminic acid aldolase (EC 4.1.3.3) NMPK nucleoside 5′9-monophosphate kinase (EC 2.7.7.4) PEP phosphoenolpyruvate PP pyrophosphorylase Pi inorganic phosphate PPi inorganic pyrophosphate PGM phosphoglucomutase (EC 2.7.5.1) PK pyruvate kinase (EC 2.7.1.40) PMI phosphomannose isomerase (EC 5.3.1.8) PMM phosphomannomutase (EC 5.4.2.8) Pyr pyruvate UDP uridine 5′9-diphosphate UDP-Gal uridine 5′9-diphospho-α-D-galactose UDP-GalNAc uridine 5′9-diphospho-N-acetyl-α-D-galactosamine UDP-GalN uridine 5′9-diphospho-α-D-galactosamine UDP-Glc uridine 5′9-diphospho-α-D-glucose UDP-Glc DH UDP-glucose dehydrogenase UDP-GlcA uridine 5′9-diphospho-α-D-glucuronic acid UDP-GlcNAc uridine 5′9-diphospho-N-acetyl-α-D-glucosamine UDP-Xyl uridine 5′9-diphospho-α-D-xylose UMP uridine 5′9-monophosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fukuda M (1994) In Complex Carbohydrates in Drug Research, Alfred Benzon Symposium (Bock K, Clausen H, eds) pp 353–65. Copenhagen: Munksgaard.Google Scholar
  2. 2.
    Liu H-W, Thorson JS (1994) Annu Rev Microbiol 48: 223–56.Google Scholar
  3. 3.
    Khan SH, Hindsgaul O (1994) In Molecular Glycobiology, (Fukuda M, Hindsgaul O, eds) pp 206–29. Oxford: IRL PressGoogle Scholar
  4. 4.
    Dinter A, Berger EG (1995) In Glycoimmunology (Alavi A, Axford JS, eds) pp 53–82. New York: Plenum Press.Google Scholar
  5. 5.
    Almeida R, Amado M, David L, Levery SB, Holmes EH, Merkx G, van Kessel AG, Rygaard E, Hassan H, Bennett E, Clausen H (1997) J Biol Chem 272: 31979–91. 31991.Google Scholar
  6. 6.
    Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H (1998) J Biol Chem 273: 12770–78.Google Scholar
  7. 7.
    Sato T, Aoki N, Matsuda T, Furukawa K (1998) Biochem Biophys Res Commun 244: 637–41.Google Scholar
  8. 8.
    Hennet T, Dinter A, Kuhnert P, Mattu TS, Rudd PM, Berger EG (1998) J Biol Chem 273: 58–65.Google Scholar
  9. 9.
    Sears P, Wong C-H (1998) Cell Mol Life Sci 54: 223–52.Google Scholar
  10. 10.
    Kornfeld R, Kornfeld S (1985) Annu Rev Biochem 54: 631–64.Google Scholar
  11. 11.
    Leloir LF (1971) Science 172: 1299–303.Google Scholar
  12. 12.
    Roseman S (1962) Proc Nat Acad Sci USA 48: 437–41.Google Scholar
  13. 13.
    Munch-Petersen A (1956) Acta Chem Scand 10: 928–34.Google Scholar
  14. 14.
    Munch-Petersen A, Kalckar HM, Cutolo E, Smith EEB (1953) Nature 172: 1036–37.Google Scholar
  15. 15.
    Cabib E, Leloir LF, Cardini CE (1953) J Biol Chem 203: 1055–70.Google Scholar
  16. 16.
    Field MC, Wainwright LJ (1995) Glycobiology 5: 463–72.Google Scholar
  17. 17.
    Malissard M, Zeng S, Berger EG (1999) Glycoconj J, review. Google Scholar
  18. 18.
    Klaffke W (1994) Carbohydrates in Europe 10: 9–17.Google Scholar
  19. 19.
    Ichikawa Y, Wang R, Wong C-H (1994) Methods Enzymol 247: 107–27.Google Scholar
  20. 20.
    Wong C-H, Whitesides GM(1994) Enzymes in SyntheticOrganic Chemistry. Oxford: Elsevier Science.Google Scholar
  21. 21.
    Toone EJ, Whitesides GM (1991) In Enzymes in Carbohydrate Synthesis (Bednarski MD, Simon ES, eds) pp 1–22. Washington: American Chemical Society.Google Scholar
  22. 22.
    Elling L (1997) In Advances in Biochemical Engineering/ Biotechnology (Scheper T, ed) pp 89–144. Berlin: Springer-Verlag.Google Scholar
  23. 23.
    Stein A, Kula M-R, Elling L (1998) Glycoconj J 15: 139–45.Google Scholar
  24. 24.
    Kawai H, Nakazima S, Okuda M, Yano T, Tachiki T, Tochikura T (1978) J Ferment Technol 56: 586–92.Google Scholar
  25. 25.
    Ko JH, Shin H-S, Kim YS, Lee D-S, Kim C-H (1996) Appl Biochem Biotechnol 60: 41–8.Google Scholar
  26. 26.
    Wong C-H, Haynie SL, Whitesides GM (1983) J Am Chem Soc 105: 115–17.Google Scholar
  27. 27.
    Heidlas JE, Lees WJ, Whitesides GM (1992) J Org Chem 57: 152–57.Google Scholar
  28. 28.
    Wong C-H, Haynie SL, Whitesides GM (1982) J Org Chem 47: 5416–18.Google Scholar
  29. 29.
    Wong C-H, Wang R, Ichikawa Y (1992) J Org Chem 57: 4343–44.Google Scholar
  30. 30.
    Zervosen A, Elling L (1996) J Am Chem Soc 118: 1836–40.Google Scholar
  31. 31.
    Gygax D, Spies P, Winkler T, Pfaar U (1991) Tetrahedron 47: 5119–22.Google Scholar
  32. 32.
    De Luca C, Lansing M, Martini I, Crescenzi F, Shen G-J, O'Regan M, Wong C-H (1995) J Am Chem Soc 117: 5869–70.Google Scholar
  33. 33.
    De Luca C, Lansing M, Crescenzi F, Martini I, Shen G-J, O'Regan M, Wong C-H (1996) Bioorg Med Chem 4: 131–42.Google Scholar
  34. 34.
    Anderson EP, Maxwell ES, Main Burton R (1959) J Am Chem Soc 81: 6514–17.Google Scholar
  35. 35.
    Shedlovsky AE, Boye HA, Brenner S (1964) Anal Biochem 8: 362–66.Google Scholar
  36. 36.
    Kragl U, Gödde A, Wandrey C, Kinzy W, Cappon JJ, Lugtenburg J (1993) Tetrahedron Asymm 4: 1193–202.Google Scholar
  37. 37.
    Koizumi S, Endo T, Tabata K, Ozaki A(1998) Nature Biotechnology 16: 847–50.Google Scholar
  38. 38.
    Hokke CH, Zervosen A, Elling L, Joziasse DH, van den Eijnden DH (1996) Glycoconjugate J 13: 687–92.Google Scholar
  39. 39.
    Fang J, Li J, Chen X, Zhang Y, Wang J, Guo Z, Zhang W, Yu L, Brew K, Wang PG (1998) J Am Chem Soc 120: 6635–38.Google Scholar
  40. 40.
    Dobrogosz WJ (1968) J Bacteriol 95: 578–84.Google Scholar
  41. 41.
    White RJ (1968) Biochem J 106: 847–58.Google Scholar
  42. 42.
    Freese EB, Cole RM, Klofat W, Freese E (1970) J Bacteriol 101: 1046–62.Google Scholar
  43. 43.
    Mengin-Lecreulx D, van Heijenoort J (1993) J Bacteriol 175: 6150–57.Google Scholar
  44. 44.
    Mengin-Lecreulx D, van Heijenoort J (1994) J Bacteriol 176: 5788–95.Google Scholar
  45. 45.
    Hinderlich S, Nohring S, Weise C, Franke P, Stasche R, Reutter W (1998) Eur J Biochem 252: 133–39.Google Scholar
  46. 46.
    Asensio C, Ruiz-Amil M (1966) Methods Enzymol 9: 421–25.Google Scholar
  47. 47.
    Glaser L, Brown DH (1955) Proc Natl Acad Sci USA 41: 253–60.Google Scholar
  48. 48.
    Wagner RR, Cynkin MA (1968) Anal Biochem 25: 572–77.Google Scholar
  49. 49.
    Heidlas JE, Lees WJ, Pale P, Whitesides GM (1992) J Org Chem 57 146–51.Google Scholar
  50. 50.
    Korf U, Thimm J, Thiem J (1991) SynLett 313–15.Google Scholar
  51. 51.
    Lang L, Kornfeld S (1984) Anal Biochem 140: 264–69.Google Scholar
  52. 52.
    Ropp PA, Cheng P-W (1990) Anal Biochem 187: 104–8.Google Scholar
  53. 53.
    Leiting B, Pryor KD, Eveland SS, Anderson MS (1998) Anal Biochem 256: 185–91.Google Scholar
  54. 54.
    Pastuszak I, O'Donnell J, Elbein AD (1996) J Biol Chem 271: 23653–56.Google Scholar
  55. 55.
    Pastuszak I, Drake R, Elbein AD (1996) J Biol Chem 271: 20776–82.Google Scholar
  56. 56.
    Sunthankar P, Pastuszak I, Rooke A, Elbein AD, van de Rijn I, Canfield WM, Drake RR (1998) Anal Biochem 258: 195–201.Google Scholar
  57. 57.
    Look GC, Ichikawa Y, Shen G-J, Cheng P-W, Wong C-H (1993) J Org Chem 58: 4326–30.Google Scholar
  58. 58.
    Mio T, Yabe T, Arisawa M, Yamada-Okabe H (1998) J Biol Chem 273: 14392–97.Google Scholar
  59. 59.
    Maley F, Maley GF (1959) Biochim Biophys Acta 31: 577–78.Google Scholar
  60. 60.
    Piller F, Hanlon MH, Hill RL (1983) J Biol Chem 258: 10774–78.Google Scholar
  61. 61.
    Kingsley DM, Kozarsky KF, Hobbie L, Krieger M (1986) Cell 44: 749–59.Google Scholar
  62. 62.
    Glaser L (1959) J Biol Chem 234: 2801–5.Google Scholar
  63. 63.
    Piller F, Eckhardt AE, Hill RL (1982) Anal Biochem 127: 171–77.Google Scholar
  64. 64.
    Maley F, Tarentino AL, McGarrahan JF, DelGiacco R (1968) Biochem J 107: 637–44.Google Scholar
  65. 65.
    Szumilo T, Zeng Y, Pastuszak I, Drake R, Szumilo H, Elbein AD (1996) J Biol Chem 271: 13147–54.Google Scholar
  66. 66.
    Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED (1996) Biochemistry 35: 579–85.Google Scholar
  67. 67.
    Bülter T, Wandrey C, Elling L (1997) Carbohydr Res 305: 469–73.Google Scholar
  68. 68.
    Maley F (1970) Biochem Biophys Res Commun 39: 371–78.Google Scholar
  69. 69.
    Feingold DS, Barber GA (1990) Methods Plant Biochem 2: 39–78.Google Scholar
  70. 70.
    Neufeld EF, Hall CW (1965) Biochem Biophys Res Commun 19: 456–61.Google Scholar
  71. 71.
    Zalitis J, Feingold DS (1968) Biochem Biophys Res Commun 31: 693–98.Google Scholar
  72. 72.
    Simon ES, Grabowski S, Whitesides GM (1990) J Org Chem 55: 1834–41.Google Scholar
  73. 73.
    Drake RR, Zimniak P, Haley BE, Lester R, Elbein AD, Radominska A (1991) J Biol Chem 266: 23257–60.Google Scholar
  74. 74.
    Toone EJ, Simon ES, Whitesides GM (1991) J Org Chem 56: 5603–6.Google Scholar
  75. 75.
    Ankel H, Feingold DS (1965) Biochemistry 4: 2468–75.Google Scholar
  76. 76.
    Varughese JK, Schutzbach JS, Ankel H (1977) J Biol Chem 252: 8013–17.Google Scholar
  77. 77.
    Kyossev ZN, Drake RR, Kyosseva SV, Elbein AD (1995) Eur J Biochem 228: 109–12.Google Scholar
  78. 78.
    Stasche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) J Biol Chem 272: 24319–24.Google Scholar
  79. 79.
    Munster AK, Eckhardt M, Potvin B, Muhlenhoff M, Stanley P, Gerardy-Schahn R (1998) Proc Natl Acad Sci USA 95: 9140–45.Google Scholar
  80. 80.
    Uchida Y, Tsukada Y, Sugimori T (1985) Agric Biol Chem 49: 181–87.Google Scholar
  81. 81.
    Ohta Y, Shimosaka M, Murata K, Tsukada Y, Kimura A (1986) Appl Microbiol Biotechnol 24: 386–91.Google Scholar
  82. 82.
    Kragl U, Gygax D, Ghisalba O, Wandrey C (1991) Angew Chem Int Ed Engl 30: 827–28.Google Scholar
  83. 83.
    Kragl U, Kittelmann M, Ghisalba O, Wandrey C (1995) Ann N Y Acad Sci 750: 300–305.Google Scholar
  84. 84.
    Augé C, Gautheron C (1988) Tetrahedron Lett 29: 789–90.Google Scholar
  85. 85.
    Comb DG, Roseman S (1958) J Am Chem Soc 80: 497–99.Google Scholar
  86. 86.
    Kim M-J, Hennen WJ, Sweers HM, Wong C-H (1988) JAmChem Soc 110: 6481–86.Google Scholar
  87. 87.
    Simon ES, Bednarski MD, Whitesides GM (1988) J Am Chem Soc 110: 7159–63.Google Scholar
  88. 88.
    Warren L, Blacklow RS (1962) J Biol Chem 237: 3527–34.Google Scholar
  89. 89.
    Arce A, Maccioni HF, Caputto R (1966) Arch Biochem Biophys 116: 52–58.Google Scholar
  90. 90.
    Kean EL, Roseman S (1966) Methods Enzymol 8: 208–15.Google Scholar
  91. 91.
    Spiro MJ, Spiro RG (1968) J Biol Chem 243: 6520–28.Google Scholar
  92. 92.
    van den Eijnden DH, van Dijk W (1972) Hoppe-Seyler's Z Physiol Chem 353: 1817–20.Google Scholar
  93. 93.
    Schauer R, Wember M, Ferreira do Amaral C (1972) Hoppe-Seyler's Z Physiol Chem 353: 883–86.Google Scholar
  94. 94.
    Haverkamp J, Beau JM, Schauer R (1979) Hoppe-Seyler's Z Physiol Chem 360: 159–66.Google Scholar
  95. 95.
    Higa HH, Paulson JC (1985) J Biol Chem 260: 8838–49.Google Scholar
  96. 96.
    Thiem J, Treder W (1986) Angew Chem Int Ed Engl 25: 1096–97.Google Scholar
  97. 97.
    Thiem J, Stangier P (1990) Liebigs Ann Chem: 1101–5.Google Scholar
  98. 98.
    Ichikawa Y, Liu JL-C, Shen G-J, Wong C-H (1991) J Am Chem Soc 113: 6300–2.Google Scholar
  99. 99.
    Shames SL, Simon ES, Christopher CW, Schmid W, Whitesides GM, Yang L-L (1991) Glycobiology 1: 187–91.Google Scholar
  100. 100.
    Shen G-J, Liu JL-C, Wong C-H (1992) Biocatalysis 6: 31–42.Google Scholar
  101. 101.
    Kittelmann M, Klein T, Kragl U, Wandrey C, Ghisalba O (1995) Appl Microbiol Biotechnol 44: 59–67.Google Scholar
  102. 102.
    Kragl U, Klein T, Vasic-Racki D, Kittelmann M, Ghisalba O, Wandrey C (1996) Ann N Y Acad Sci 799: 577–83.Google Scholar
  103. 103.
    Vann WF, Silver RP, Abeijon C, Chang K, Aaronson W, Sutton A, Finn CW, Lindner W, Kotsatos M (1987) J Biol Chem 262: 17556–62.Google Scholar
  104. 104.
    Zapata G, Vann WF, Aaronson W, Lewis MS, Moos M (1989) J Biol Chem 264: 14769–74.Google Scholar
  105. 105.
    Augé C, Fernandez-Fernandez R, Gautheron C (1990) Carbohydr Res 200: 257–68. 268.Google Scholar
  106. 106.
    Gilbert M, Bayer R, Cunningham A-M, DeFrees S, Gao Y, Watson DC, Young NM, Wakarchuk WW (1998) Nature Biotechnology 16: 769–72.Google Scholar
  107. 107.
    Rosen SM, Zeleznick LD (1966) Methods Enzymol 8: 145–47.Google Scholar
  108. 108.
    Preiss J, Greenberg E (1967) Anal Biochem 18: 464–71.Google Scholar
  109. 109.
    Braell WA (1976) Anal Biochem 74: 484–87.Google Scholar
  110. 110.
    Grier TJ, Rasmussen JR (1982) Anal Biochem 127: 100–4.Google Scholar
  111. 111.
    Pallanca JE, Turner NJ (1993) J Chem Soc Perkin Trans 1: 3017–22.Google Scholar
  112. 112.
    Szumilo T, Drake RR, J. LY, Elbein AD (1993) J Biol Chem 268: 17943–50.Google Scholar
  113. 113.
    Elling L, Ritter JE, Verseck S (1996) Glycobiology 6: 591–97.Google Scholar
  114. 114.
    Fey S, Elling L, Kragl U (1997) Carbohydr Res 305: 475–81.Google Scholar
  115. 115.
    Wang P, Shen G-J, Wang Y-F, Ichikawa Y, Wong C-H (1993)J Org Chem 58: 3985–90.Google Scholar
  116. 116.
    Ginsburg V (1958) J Am Chem Soc 80: 4426.Google Scholar
  117. 117.
    Ginsburg V (1960) J Biol Chem 235: 2196–201.Google Scholar
  118. 118.
    Ginsburg V (1961) J Biol Chem 236: 2389–93.Google Scholar
  119. 119.
    Foster DW, Ginsburg V (1961) Biochim Biophys Acta 54: 376–78.Google Scholar
  120. 120.
    Overton K, Serif GS (1981) Biochim Biophys Acta 675: 281–4.Google Scholar
  121. 121.
    Bulet P, Hoflack B, Porchet M, Verbert A (1984) Eur J Biochem 144: 255–59.Google Scholar
  122. 122.
    Liao T-H, Barber GA (1972) Biochim Biophys Acta 276: 85–93.Google Scholar
  123. 123.
    Broschat KO, Chang S, Serif G (1985) Eur J Biochem 153: 397–401.Google Scholar
  124. 124.
    Yamamoto K, Katayama I, Onoda Y, Inami M, Kumagai H, Tochikura T (1993) Arch Biochem Biophys 300: 694–98.Google Scholar
  125. 125.
    Bonin CP, Potter I, Vanzi GF, Reiter W-D (1997) Proc Natl Acad Sci USA 94: 2085–90.Google Scholar
  126. 126.
    Sturia L, Disso A, Zanardi D, Benatti U, De Flora, Tonetti M (1997) FEBS Lett 412: 126–30.Google Scholar
  127. 127.
    Sullivan FX, Kumar R, Kriz R, Stahl M, Xu G-Y, Rouse J, Chang X-J, Boodhoo A, Potvin B, Cumming DA (1998) J Biol Chem 273: 8193–202.Google Scholar
  128. 128.
    Ohyama C, Smith PL, Angata K, Fukuda MN, Lowe JB, Fukuda M (1998) J Biol Chem 273: 14582–87.Google Scholar
  129. 129.
    Kornfeld RH, Ginsburg V (1966) Biochem Biophys Acta 117: 79–87.Google Scholar
  130. 130.
    Chang S, Duenr B, Serif G (1988) J Biol Chem 263: 1693–97.Google Scholar
  131. 131.
    Tonetti M, Sturia L, Bisso A, Benatti U, De Flora A (1996) J Biol Chem 271: 27274–79.Google Scholar
  132. 132.
    Andrianopoulos K, Wang L, Reeves PR (1998) J Bacteriol 180: 998–1001.Google Scholar
  133. 133.
    Tonetti M, Rizzi M, Vigevani P, Sturla L, Bisso A, De Flora A, Bolognesi M (1998) Acta Cryst 54: 684–86.Google Scholar
  134. 134.
    Bekesi JG, Winzler RJ (1967) J Biol Chem 24: 3873–79.Google Scholar
  135. 135.
    Coffey JW, Neal Miller O, Sellinger OZ (1964) J Biol Chem 239: 4011–17.Google Scholar
  136. 136.
    Ishihara H, Massaro DJ, Heath EC (1968) J Biol Chem 243: 1103–9.Google Scholar
  137. 137.
    Ishihara H, Heath EC (1968) J Biol Chem 243: 1110–15.Google Scholar
  138. 138.
    Schachter H, Ishihara H, Heath EC (1972) Methods Enzymol 28: 285–87.Google Scholar
  139. 139.
    Prohaska R, Schenkel-Brunner H (1975) Anal Biochem 69: 536–44.Google Scholar
  140. 140.
    Stiller R, Thiem J (1992) Liebigs Ann Chem 467–71.Google Scholar
  141. 141.
    Kilker RD, Shuey DK, Serif GS (1979) Biochem Biophys Acta 570: 271–83.Google Scholar
  142. 142.
    Park SH, Pastuszak I, Drake R, Elbein AD (1998) J Biol Chem 273: 5685–91.Google Scholar
  143. 143.
    Ginsburg V (1966) Methods Enzymol 8: 293–95.Google Scholar
  144. 144.
    Yamamoto K, Maruyama T, Kumagai H, Tochikura T, Seno T, Yamaguchi H (1984) Agric Biol Chem 48: 823–24.Google Scholar
  145. 145.
    Ichikawa Y, Lin Y-C, Dumas DP, Shen G-J, Garcia-Junceda E, Williams MA, Bayer R, Ketcham C, Walker LE, Paulson JC, Wong C-H (1992) J Am Chem Soc 114: 9283–98.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Thomas Bülter
    • 1
  • Lothar Elling
    • 1
  1. 1.Institute of Enzyme TechnologyUniversity of Düsseldorf, Research Center JülichJülichGermany

Personalised recommendations