Plant Molecular Biology

, Volume 40, Issue 1, pp 23–35 | Cite as

Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera)

  • Peter R. LaFayette
  • Karl-Erik L. Eriksson
  • Jeffrey F.D. Dean

Abstract

Four closely related cDNA clones encoding laccase isoenzymes from xylem tissues of yellow-poplar (Ltlacc2.1–4) were identified and sequenced. The inferred yellow-poplar laccase gene products were highly related to one another (79–91% at the amino acid level) and showed significant similarity to other blue copper oxidases, especially with respect to the copper-binding domains. The encoded proteins had N-terminal signal sequences and 17–19 potential N-linked glycosylation sites. The mature proteins were predicted to have molecular masses of ca. 61 kDa (unglycosylated) and high isoelectric points (pI 9.3–9.5). The canonical copper ligands were conserved, with the exception of a Leu residue associated with the axial position of the Type-1 cupric ion. The residue at this position has been proposed to influence the redox potential of Type-1 cupric ions. Northern blot analysis revealed that the yellow-poplar laccase genes are differentially expressed in xylem tissues. The genes were verified as encoding active laccases by heterologous expression in tobacco cells and demonstration of laccase activity in extracts from transformed tobacco cell lines.

forest tree lignin biosynthesis phenol oxidase rice secondary products wood formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amaravadi, L. and King, M.W. 1994. A rapid and effi-cient, nonradioactive method for screening recombinant DNA libraries. BioTechniques 16: 98–103.Google Scholar
  2. 2.
    Båga, M., Chibbar, R.N. and Kartha, K.K. 1995. Molecular cloning and expression of peroxidase genes from wheat. Plant Mol. Biol. 29: 647–662.Google Scholar
  3. 3.
    Bao, W., O'Malley, D.M., Whetten, R. and Sederoff, R.R. 1993. A laccase associated with lignification in loblolly pine xylem. Science 260: 672–674.Google Scholar
  4. 4.
    Baulcombe, D. and Key, J.L. 1980. Polyadenylated RNA sequences which are reduced in concentration following auxin treatment of soybean hypocotyls. J. Biol. Chem. 255: 8907–8913.Google Scholar
  5. 5.
    Bertrand, M.G., 1987. Sur l'action oxydante des sels manganeux et sur la constitution chimique des oxydases. C. r. Acad. Sci. Paris 124: 1355–1358.Google Scholar
  6. 6.
    Boston, R.S., Viitanen, P.V. and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32: 191–222.Google Scholar
  7. 7.
    Butt, V.S. 1980. Direct oxidases and related enzymes. In: D.D. Davies <nt>(Ed.)</nt>, The Biochemistry of Plants, vol. 2, Academic Press, New York, pp. 81–123.Google Scholar
  8. 8.
    D'Andrea, G., Bouwstra, J.B., Kamerling, J.P. and Vliegenthart, J.F.G. 1988. Primary structure of the xylose-containing N-linked carbohydrate moiety from ascorbic acid oxidase of Cucurbita pepo medullosa. Glyconjugate J 5: 151–157.Google Scholar
  9. 9.
    Davin, L.B., Bedgar, D.L., Katamaya, T. and Lewis, N.G. 1992. On the stereoselective synthesis of (C)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 31: 3869–3874.Google Scholar
  10. 10.
    Davin, L.B., Wang, H.B., Crowell, A.L., Bedgar, D.L., Martin, D.M., Sarkanen, S. and Lewis, N.G. 1997. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275: 362–366.Google Scholar
  11. 11.
    Dean, J.F.D. 1997. Lignin analysis. In: W.V. Dashek <nt>(Ed)</nt>, Plant Biochemistry and Molecular Biology, CRC Press, New York, pp. 199–215 (1997).Google Scholar
  12. 12.
    Dean, J.F.D. and Eriksson, K.-E.L. 1994. Laccase and the deposition of lignin in vascular plants. Holzforschung 48: 21–33 (1994).Google Scholar
  13. 13.
    Dean, J.F.D., LaFayette, P.R., Rugh, C., Tristram, A.H., Hoopes, J.T., Eriksson, K.-E.L. and Merkle, S.A. 1998. Laccases associated with lignifying vascular tissues. ACS Symposium Ser., Vol. 697, in press.Google Scholar
  14. 14.
    Dean, J.F.D., Sterjiades, R. and Eriksson, K.-E.L. 1994. Purification and characterization of an anionic peroxidase from sycamore maple (Acer pseudoplatanus L.) cell suspension cultures. Physiol. Plant. 92: 233–240.Google Scholar
  15. 15.
    Driouich, A., Laine, J.A.-C., Vian, B. and Faye, L. 1992. Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J. 2: 13–24.Google Scholar
  16. 16.
    Edwards, J.W. and Coruzzi, G.M. 1990. Cell-specific gene expression in plants. Annu. Rev. Genet. 24: 275–303.Google Scholar
  17. 17.
    Eggert, C., Temp, U., Dean, J.F. and Eriksson, K.E. 1996. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391: 144–148 (1996).Google Scholar
  18. 18.
    Emanuel, J.R. 1991. Simple and efficient system for synthesis of non-radioactive nucleic acid hybridization probes using PCR. Nucl. Acids Res. 19: 2790.Google Scholar
  19. 19.
    Engler-Blum, G., Meier, M., Frank, J. and Muller, G.A. 1993. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32Pbased hybridizations. Anal. Biochem. 210: 235–244.Google Scholar
  20. 20.
    Eriksson, K.E., LaFayette, P.R., Merkle, S.A. and Dean, J.F.D. 1995. Laccase as a target for decreasing lignin content in transgenic trees through antisense genetic engineering. In: E. Srebotnik and K. Messner <nt>(Eds.)</nt> Proceedings Sixh International Conference on Biotechnology in the Pulp and Paper Industry, Facultas-Universitätsverlag, Vienna, pp. 310–314.Google Scholar
  21. 21.
    Freudenberg, K. 1968. The constitution and biosynthesis of lignin. In: A.C. Neish and K. Freudenberg <nt>(Eds.)</nt> Constitution and Biosynthesis of Lignin, Springer-Verlag, Heidelberg. pp. 47–116.Google Scholar
  22. 22.
    Gallie, D.R. 1993. Posttranscriptional regulation of gene expression in plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 44: 77–105 (1993).Google Scholar
  23. 23.
    Halaban, R., Cheng, E., Zhang, Y.H., Moellmann, G., Hanlon, D., Michalak, M., Setaluri, V. and Hebert, D.N. 1997. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl. Acad. Sci. USA 94: 6210–6215.Google Scholar
  24. 24.
    Hasenfratz, M.P., Jeltsch, J.M., Michalak, M. and Durst, F. 1997. Cloning and characterization of a wounding-induced analog of the chaperone calnexin from Helianthus tuberosus. Plant Physiol. Biochem. 35: 553–564.Google Scholar
  25. 25.
    Henrik, N., Engelbrecht, J., Brunak, S. and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10: 1–6.Google Scholar
  26. 26.
    Israel, D.I. 1993. A PCR-based method for the high stringency screening of DNA libraries. Nucl. Acids Res. 21: 2627–2631.Google Scholar
  27. 27.
    Jeffreys, A.J., Wilson, V. and Thein, S.L. 1985. Hypervariable 'minisatellite' regions in human DNA. Nature 314: 67–73.Google Scholar
  28. 28.
    Karlsson, B.G., Aasa, R., Malmström, B. and Lundberg, L.G. 1989. Rack-induced bonding in blue copper proteins: spectroscopic properties and reduction potential of the azurin mutant Met-121!Leu. FEBS Lett. 253: 99–102.Google Scholar
  29. 29.
    Keifer-Meyer, M.-C., Gomord, V., O'Connell, A., Halpin, C. and Faye, L. 1996. Cloning and sequence analysis of laccaseencoding cDNA clones from tobacco. Gene 178: 205–207.Google Scholar
  30. 30.
    Keilin, D. and Mann, T. 1939. Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature 143: 23–24.Google Scholar
  31. 31.
    LaFayette, P.R., Eriksson, K.E. and Dean, J.F.D. 1985. Nucleotide sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acer pseudoplatanus L.). Plant Physiol 107: 667–668.Google Scholar
  32. 32.
    Lassner, M.W., Peterson, P. and Yoder, J.I. 1989. Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol. Biol. Rep. 7: 116–128.Google Scholar
  33. 33.
    Law, D.J. and Timberlake, W.E. 1980. Developmental regulation of laccase levels in Aspergillus nidulans. J. Bact. 144: 509–517.Google Scholar
  34. 34.
    Liu, L., Dean, J.F.D., Friedman, W.E. and Eriksson, K.-E.L. 1994. A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J 6: 213–224.Google Scholar
  35. 35.
    Logemann, E., Parniske, M. and Hahlbrock, K. 1995. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc. Natl. Acad. Sci. USA 92: 5905–5909.Google Scholar
  36. 36.
    Mansur, M., Suarez, T., Fernandez-Larrea, J.B., Brizuela, M.A. and Gonzalez, A.E. 1967. Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197. Appl. Environ. Microbiol. 63: 2637–2646.Google Scholar
  37. 37.
    Messerschmidt, A. and Huber, R. 1990. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modeling and structural relationships. Eur. J. Biochem. 187: 341–352.Google Scholar
  38. 38.
    Nagata, T., Okada, K., Takebe, I. and Mataui, C. 1981. Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse phase-evaporation vesicles (liposomes). Mol. Gen. Genet. 184: 161–165.Google Scholar
  39. 39.
    Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911.Google Scholar
  40. 40.
    Ohkawa, J., Okada, N., Shinmyo, A. and Takano, M. 1989. Primary structure of cucmber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: Homology with blue copper proteins and tissue-specific expression. Proc. Natl. Acad. Sci. USA 86: 1239–1243.Google Scholar
  41. 41.
    Pedrazzini, E., Giovinazzo, G., Bielli, A., deVirgilio, M., Frierio, L., Pesca, M., Faoro, F., Bollini, R., Ceriotti, A., and Vitale, A. 1997. Protein quality control along the route to the plant vacuole. Plant Cell 9: 1869–1880.Google Scholar
  42. 42.
    Pelle, R. and Murphy, N.B. 1993. Northern hybridization: rapid and simple electrophoretic conditions. Nucl. Acids. Res. 21: 2783–2784.Google Scholar
  43. 43.
    Reinhammar, B. 1984. Laccase. In: R. Lontie <nt>(Ed.)</nt>, Copper Proteins and Copper Enzymes, CRC Press, Boca Raton, FL, pp. 1–35.Google Scholar
  44. 44.
    Saloheimo, M., Niku-Paavola, M.-L. and Knowles, J.K.C. 1991. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J. Gen. Microbiol. 137: 1537–1544.Google Scholar
  45. 45.
    Savidge, R. and Udagama-Randeniya. 1992. Cell wall-bound coniferyl alcohol oxidase associated with lignification in conifers. Phytochemistry 31: 2959–2966.Google Scholar
  46. 46.
    Schardl, C., Byrd, A.D., Benzion, G.B., Altschuler, M.A., Hildebrand, D.F. and Hunt, A.G. 1987. Design and construc35 tion of a versatile system for the expression of foreign genes in plants. Gene 61: 1–11.Google Scholar
  47. 47.
    Siedow, J.N., Umbach, A.L. and Moore, A.L. 1995. The active site of the cyanide-resistant oxidase from plant mitochondria contains a binuclear iron center. FEBS Lett. 362: 10–14.Google Scholar
  48. 48.
    Solomon, E.I., Baldwin, M.J. and Lowery, M.D. 1992. Electronic structure of active sites in copper proteins: contributions to reactivity. Chem. Rev. 92: 521–542.Google Scholar
  49. 49.
    Sterjiades, R., Dean, J.F.D. and Eriksson, K.-E.L. 1992. Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol. 99: 1162–1168.Google Scholar
  50. 50.
    Sterjiades, R., Dean, J.F.D., Gamble, G., Himmelsbach, D.S. and Eriksson, K.-E.L. 1983. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Reactions with monolignols and lignin model compounds. Planta 190: 75–87.Google Scholar
  51. 51.
    Strathman, M., Hamilton, B.A., Mayeda, C.A., Simon, M.I., Meyerowitz, E.M. and Palazzolo, M.J. 1991. Transposonfacilitated DNA sequencing. Proc. Natl. Acad. Sci USA 88: 1247–1250.Google Scholar
  52. 52.
    Sugumaran, M., Giglio, L., Kundzicz, H., Saul, S. and Semensi, V. 1992. Studies on the enzymes involved in puparial cuticle sclerotization in Drosophila melanogaster. Arch. Insect. Biochem. Physiol. 19: 271–283.Google Scholar
  53. 53.
    Takahashi, T., Hotta, T., Ishihara, H., Mori, M., Tejima, S., Bligny, R., Akazawa, T., Endo, S. and Arata, Y. 1986. Xylosecontaining common structural unit in N-linked oligosaccharides of laccase from sycamore maple cells. Biochemistry 25: 388–395.Google Scholar
  54. 54.
    Troutt, A.B., McHeyzer-Williams, M.G., Pulendran, B. and Nossal, G.J.V. 1992. Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc. Natl. Acad. Sci. USA 89: 9823–9825.Google Scholar
  55. 55.
    von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucl. Acids. Res. 14: 4683–4690.Google Scholar
  56. 56.
    Wahleithner, J.A., Xu, F., Brown, K.M., Brown, S.H., Golightly, E.J., Halkier, T., Kauppinen, S., Pederson, A. and Schneider, P. 1996. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr. Genet. 29: 395–403.Google Scholar
  57. 57.
    Wilde, H.D., Meagher, R.B. and Merkle, S.A. 1992. Expression of foreign genes in transgenic yellow-poplar plants. Plant Physiol. 98: 114–120.Google Scholar
  58. 58.
    Xu, F., Shin, W., Brown, S.H., Wahleitner, J.A., Sundaram, U.M. and Salomon, E.I. 1996. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim. Biophys. Acta 1292: 303–311.Google Scholar
  59. 59.
    Zhou, M.I., Xue, D., Gomez-Sanchez, E.P. and Gomez-Sanchez, C.E. 1994. Improved downward capillary transfer for blotting of DNA and RNA. BioTechniques 16: 58–59.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Peter R. LaFayette
    • 1
  • Karl-Erik L. Eriksson
    • 2
  • Jeffrey F.D. Dean
    • 1
  1. 1.Warnell School of Forest Resources University of GeorgiaAthensUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations