, Volume 107, Issue 2, pp 115–122 | Cite as

Parameters influencing the regeneration capacity of calluses derived from mature indica and japonica rice seeds after microprojectile bombardment

  • Julio Alfonso-rubí
  • Pilar Carbonero
  • Isabel Díaz


The microprojectile bombardment procedure has allowed the stable transformation of indica and japonica rice varieties, although at different frequencies of transformation depending mainly on their regeneration capacity and on the specific parameters of the transformation protocol. A study of the process of regeneration to whole plants from primary calli derived from mature indica and japonica rice seeds, via embryogenesis, has shown that somatic embryos are produced by division and differentiation of the external cell layers of callus tissues. Adjusting the bombardment conditions to optimize gene delivery to those regenerable cells, we have evaluated the influence of parameters such as the target distance, particle penetration and the effect of osmotic treatment on the regeneration capacity of bombarded cells.

gus expressing cells histological analysis japonica and indica rice particle bombardment primary callus regeneration capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chu, C.C., C.C. Wang, C.S. Sun, H. Chen, K.C. Yin, C.Y. Chu & F.Y. Bi, 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sinica 18: 659–668.Google Scholar
  2. Christou, P., 1996. Transformation technology. Trends Plant Sci 1: 423–431.CrossRefGoogle Scholar
  3. Christou, P., 1997. Rice transformation: bombardment. Plant Mol Biol 35: 197–203.PubMedCrossRefGoogle Scholar
  4. Christou, P. & T. Ford, 1995. Parameters influencing stable transformation of rice embryogenic tissue and recovery of transgenic plants using electric discharge particle acceleration. Ann Bot: 407–413.Google Scholar
  5. DeBlock, M. & D. Debrouwer, 1992. In situ enzyme histochemistry on plastic embedded plant material. The development of and artefact-free-β-glucuronidase assay. Plant J 2: 261–266.CrossRefGoogle Scholar
  6. Fromm, M.E., F. Morrish, C. Armstrong, R. Williams, J. Thomas & T.M. Klein, 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.PubMedCrossRefGoogle Scholar
  7. Higuchi, N. & E. Maeda, 1991. Effect of pre-treatment with excess sucrose or mannitol on plant regeneration from rice callus. Jap J Crop Sci 60: 122–129.Google Scholar
  8. Jain, R.K., S. Jain & R. Wu, 1996a. Stimulatory effect of water stress on plant regeneration in aromatic indica rice varieties. Plant Cell Rep 15: 449–454.CrossRefGoogle Scholar
  9. Jain, R.K., S. Jain, B. Wang & R. Wu, 1996b. Optimization of biolistic method for transient gene expression and production of agronomically useful transgenic Basmati rice plants. Plant Cell Rep 15: 963–968.CrossRefGoogle Scholar
  10. Jefferson, R.A., 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5: 387–405.Google Scholar
  11. Kemper, E.L., J. Silva da & P. Arruda, 1996. Effect of microprojectile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.) embryos. Plant Sci 121: 85–93.CrossRefGoogle Scholar
  12. Oard, J.H., S.D. Linscombe, M.P. Braverman, F. Jodari, D.C. Blouin, M. Leech, A. Kohli, P. Vain, J.C. Cooley & P. Christou, 1996. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breeding 2: 359–368.CrossRefGoogle Scholar
  13. Potrykus, I., P.K. Burkhardt, S.K. Datta, J. Fütterer, G.C. Ghosh-Biswas, A. Klöti, G. Spangenberg & J. Wünn, 1995. Genetic engineering of Indica rice in support of sustained production of affordable and high quality food in developing countries. Euphytica 85: 441–449.CrossRefGoogle Scholar
  14. Rueb, S., M. Leneman, R.A. Schilperoort & L.A.M. Hensgens, 1994. Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.) Plant Cell Tiss Org Cult 36: 259–264.CrossRefGoogle Scholar
  15. Sanford, J.C., F.D. Smith & J.A. Russell, 1993. Optimizing the biolistic process for different biological applications. Meth Enzym 217: 483–509.PubMedCrossRefGoogle Scholar
  16. Seraj, Z.I., Z. Islam, M.O. Faruque, T. Devi & S. Ahmed, 1997. Identification of the regeneration potential of embryo derived calluses from various Indica rice varities. Plant Cell Tiss Org Cult 48: 9–13.CrossRefGoogle Scholar
  17. Taylor, M.G. & I.K. Vasil, 1991. Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R.BR.) embryos following microprojectile bombardment. Plant Cell Rep 10: 120–125.CrossRefGoogle Scholar
  18. Vain, P., M.D. McMullen & J.J. Finer, 1993. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12: 84–88.CrossRefGoogle Scholar
  19. Williams, G.G. & G. Maheswaran, 1986. Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57: 443–462.Google Scholar
  20. Wünn, J., A. Klöti, P.K. Burkhardt, G.C.G. Biswas, K. Launis, V.A. Iglesias & I. Potrykus, 1996. Transgenic indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technology 14: 171–176.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Julio Alfonso-rubí
    • 1
  • Pilar Carbonero
    • 2
  • Isabel Díaz
    • 1
  1. 1.Centro de Ingeniería Genética y Biotecnología, Sancti SpiritusCuba
  2. 2.Laboratorio de Bioquímica y Biología Molecular. Departamento de Biotecnología-UPMEscuela Técnica Superior de Ingenieros AgrónomosMadridSpain

Personalised recommendations