International Journal of Theoretical Physics

, Volume 39, Issue 12, pp 2717–2753 | Cite as

Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law

  • D. Janzing
  • P. Wocjan
  • R. Zeier
  • R. Geiss
  • Th. Beth


Landauer's principle states that the erasure of one bit of information requires thefree energy kT ln 2. We argue that the reliability of the bit erasure process isbounded by the accuracy inherent in the statistical state of the energy source(“the resources”) driving the process. We develop a general framework describingthe “thermodynamic worth” of the resources with respect to reliable bit erasureor good cooling. This worth turns out to be given by the distinguishability of theresource's state from its equilibrium state in the sense of a statistical inferenceproblem. Accordingly, Kullback—Leibler relative information is a decisivequantity for the “worth” of the resource's state. Due to the asymmetry of relativeinformation, the reliability of the erasure process is bounded rather by the relativeinformation of the equilibrium state with respect to the actual state than by therelative information of the actual state with respect to the equilibrium state (whichis the free energy up to constants).


Free Energy Field Theory Equilibrium State Elementary Particle Energy Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Adami and N. Cerf, Prolegomena to a non-equilibrium quantum statistical mechanics, e-print quant-ph/9904006.Google Scholar
  2. 2.
    A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji (1988). Phys. Rev. Lett. 61, 826.Google Scholar
  3. 3.
    C. Bennett (1982). Int. J. Theor. Phys. 21(12), 905.Google Scholar
  4. 4.
    C. Bennett, H. Bernstein, S. Popescu, and B. Schumacher, quant-ph/9511030.Google Scholar
  5. 5.
    C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters (1996). Phys. Rev. A 54(5), 3824.Google Scholar
  6. 6.
    R. Blahut (1987). Principles and Practice of Information Theory, Addison-Wesley, Reading, Massachusetts.Google Scholar
  7. 7.
    Th. Cover and J. Thomas (1991). Elements of Information Theory, Wiley, New York.Google Scholar
  8. 8.
    C. Fuchs (1995). Distinguishability and accessible information in quantum theory, Ph.D. thesis, University of New Mexico; e-print quant-ph/9601020.Google Scholar
  9. 9.
    B. Gal-Or, ed (1974). Modern Developments in Thermodynamics, Wiley, New York.Google Scholar
  10. 10.
    M. Horodecki (1998). Phys. Rev. A 57(5), 3364.Google Scholar
  11. 11.
    U. Krengel (1985). Ergodic Theory, de Gruyter, Berlin.Google Scholar
  12. 12.
    R. Landauer (1961). IBM Res. J. 3, 183.Google Scholar
  13. 13.
    R. Landauer (1991). Phys. Today 44, 23.Google Scholar
  14. 14.
    G. Morigi, J. I. Cirac, M. Lewenstein, and P. Zoller, Ground state laser cooling beyond the Lamb–Dicke limit, e-print quant-ph/9706017.Google Scholar
  15. 15.
    G. Morigi, J. Eschner, J. I. Cirac, and P. Zoller, Laser cooling of two trapped ions: Sideband cooling beyond the Lamb–Dicke limit, e-print quant-ph/9812014.Google Scholar
  16. 16.
    M. Ohya and D. Petz (1993). Quantum Entropy and Its Use, Springer-Verlag Berlin.Google Scholar
  17. 17.
    M. Plenio, The Holevo bound and Landauer's principle, e-print quant-ph/9910086.Google Scholar
  18. 18.
    L. Schulman and U. Vazirani, Scalable NMR quantum computation, e-print quant-ph/9804060.Google Scholar
  19. 19.
    V. Vedral, Landauer's erasure, error correction and entanglement, e-print quant-ph/9903049.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • D. Janzing
    • 1
    • 2
  • P. Wocjan
    • 1
  • R. Zeier
    • 1
  • R. Geiss
    • 1
  • Th. Beth
    • 1
  1. 1.Institut für Algorithmen und Kognitive SystemeUniversität Karlsruhe, KarlsruheGermany
  2. 2.Institüt für Algorithmen und Kognitive SystemeUniversität KarlsruheKarlsruheGermany

Personalised recommendations