Ranking Strategies for Navigation Based Query Formulation

  • F.C. Berger
  • P. van Bommel
  • Th.P. van der Weide
Article

Abstract

Navigating through a hypermedia retrieval system bears the problem of selecting an item from a large number of options available to continue the trajectory. Ranking these options according to some criterion is a method to ease the task of navigation. A number of ranking strategies have already been proposed. This paper presents a formalization of the concept of ranking, and of the aforementioned strategies. Furthermore we propose two strategies allowing a personalized approach to ranking.

information retrieval hypermedia query formulation search support 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, M.J. (1989). The Design of Browsing and Berrypicking Techniques for the On-Line Search Interface, Online Review, 13(5), 407–431.Google Scholar
  2. Belkin, N.J. and Croft, W.B. (1992). Information Filtering and Information Retrieval: Two Sides of the Same Coin? Communications of the ACM, 35(12), 29–38.Google Scholar
  3. Berger, F.C. and van Bommel, P. (1996). Personalized Search Support for Networked Document Retrieval Using Link Inference. In A.M. Tjoa and R. Wagner (Eds.), Proceedings of the Data Base and Expert System Applications Conference (DEXA 96), Vienna, Austria: Springer-Verlag.Google Scholar
  4. Berger, F.C. and van Bommel, P. (1997). Augmenting a Characterization Network with Semantical Information, Information Processing & Management, 33(4), 453–479.Google Scholar
  5. Bruza, P.D. (1993). Stratified Information Disclosure: A Synthesis between Information Retrieval and Hypermedia. Ph.D. thesis, University of Nijmegen, Nijmegen, The Netherlands.Google Scholar
  6. Frei, H.P. and Stieger, D. (1995). The Use of Semantic Links in Hypertext Information Retrieval, Information Processing and Management, 31(1), 1–13.Google Scholar
  7. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, Massachusetts: Addison-Wesley.Google Scholar
  8. Gray, R.M. (1990). Entropy and Information Theory, New York: Springer-Verlag.Google Scholar
  9. Gudivada, V.N. and Raghavan, V.V. (1995). Design and Evaluation of Algorithms for Image Retrieval by Spatial Similarity, ACM-TOIS, 13, 115–144.Google Scholar
  10. Hamming, R.W. (1980). Coding and Information Theory, Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  11. Maher, P.E. (1993). A Similarity Measure for Conceptual Graphs. International Journal of Intelligent Systems, 8, 819–837.Google Scholar
  12. Paola, J.D. and Schowengerdt, R.A. (1995). Searching for patterns in remote sensing image databases using neural networks, proceedings. In 15th Annual International Geoscience and Remote Sensing Symposium (pp. 443–445), Florence, Italy.Google Scholar
  13. Proper, H.A. and van der Weide, Th.P. (1995). A General Theory for the Evolution of Application Models, IEEE Transactions on Knowledge and Data Engineering, 7(6), 984–996.Google Scholar
  14. van Rijsbergen, C.J. (1975). Information Retrieval, London, United Kingdom: Butterworths.Google Scholar
  15. Tomek, I. and Maurer, H. (1992). Helping the User to Select a Link, Hypermedia, 4(2), 111–122.Google Scholar
  16. Wondergem, B.C.M., van Bommel, P., Huibers, T.W.C., and van derWeide, Th. (1997). Towards an Agent-Based Retrieval Engine. In J. Furner and D.J. Harper (Eds.), Proceedings of the 19th BCS-IRSG Colloquium on IR research (pp. 126–144), Aberdeen, Scotland.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • F.C. Berger
    • 1
  • P. van Bommel
    • 1
  • Th.P. van der Weide
    • 1
  1. 1.Computing Science InstituteUniversity of NijmegenGL NijmegenThe Netherlands

Personalised recommendations