Journal of Statistical Physics

, Volume 101, Issue 1–2, pp 665–678 | Cite as

A Simple Generalized Excitability Model Mimicking Salient Features of Neuron Dynamics

  • A. Giaquinta
  • M. Argentina
  • M. G. Velarde
Article

Abstract

A generalization of the FitzHugh—Nagumo model for excitability is provided to account for salient features of Inferior Olive neurons. The base state is a limit cycle and excitability appears as spiking over peaks of the oscillations. The response of the model to various types of external stimulus is also presented. In particular, we show the relevance of an appropriate balance between amplitude and duration of the stimulus.

excitability subthreshold oscillations spiking Inferior Olive neuron dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Llinás and Y. Yarom, J. Physiol. 315:569 (1981).Google Scholar
  2. 2.
    R. Llinás and Y. Yarom, J. Physiol. 376:163 (1986).Google Scholar
  3. 3.
    L. S. Benardo and R. E. Foster, Brain Res. Bull. 17:773 (1986).Google Scholar
  4. 4.
    For a survey see E. Meron, Pattern Formation in Excitable Media (Springer, New York, 1992).Google Scholar
  5. 5.
    R. FitzHugh,Biophys. J. 1:445 (1961).Google Scholar
  6. 6.
    J. S. Nagumo, S Arimoto, and S. Yoshizawa, Proc. I.R.E. 50:2061 (1962).Google Scholar
  7. 7.
    X. Wang and J. Rinzel, in The Handbook of Brain Theory and Neural Networks, M. Arbib, ed. (MIT Press, 1995), pp. 686-691.Google Scholar
  8. 8.
    H. D. I. Abarbanel, M. I. Rabinovich, A. Selverston, M. V. Bazhenov, R. Huerta, M. M. Sushchik, and L. L. Rubchinsky, Physics-Uspekhi 39:337 (1996).Google Scholar
  9. 9.
    H. Haken, Principles of Brain Functioning (Springer-Verlag, Berlin, 1996).Google Scholar
  10. 10.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. 177:500 (1952).Google Scholar
  11. 11.
    J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory (Cambridge University Press, Cambridge, 1987).Google Scholar
  12. 12.
    B. van der Pol, London, Edinburgh and Dublin Phil. Mag. 3:65-80 (1927).Google Scholar
  13. 13.
    H. A. Braun, H. Wissing, K. Schäfer, and M. C. Hirsh, Nature 367:270 (1994).Google Scholar
  14. 14.
    E. J. Doedel, H. B. Keller, and J. P. Kernévez, Int. J. Bifurcation Chaos 1:3, 493 (1991). 678 Giaquinta et al.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • A. Giaquinta
    • 1
  • M. Argentina
    • 1
  • M. G. Velarde
    • 1
  1. 1.Instituto PluridisciplinarMadridSpain

Personalised recommendations