Journal of Atmospheric Chemistry

, Volume 46, Issue 3, pp 239–269 | Cite as

On the Drop-Size Dependence of Organic Acid and Formaldehyde Concentrations in Fog

  • B. Ervens
  • P. Herckes
  • G. Feingold
  • T. Lee
  • J. L. CollettJr.
  • S. M. Kreidenweis


Concentration differences between small (r < 8.5 μm) and large droplets(r > 8.5 μm) were observed for formic acid, acetic acid and formaldehyde in fog droplets collected in California's Central Valley. The concentration ratios (large/small droplets) of these compounds were investigated by a stepwise model approach. Assuming thermodynamic equilibrium (KHeff) results in an overestimate of the concentration ratios. Considering the time dependence of gas phase diffusion and interfacial mass transport, it appears that the lifetime of fog droplets might be sufficiently long to enable phase equilibrium for formaldehyde and acetic acid, but not for formic acid (at pH ≈ 7). Oxidation by the OH radical has no effect on formaldehyde concentrations but reduces formic acid concentrations uniformly in all drop size classes. The corresponding reaction for acetic acid is less efficient so that only in large droplets, where replenishment is slowed because the uptake rate of acid from the gas phase is slower, is the acid concentration reduced leading to a smaller concentration ratio. Formaldehyde concentrations in fog can be higher than predicted by Henry's Law due to the formation of hydroxymethanesulfonate. Its formation is dependent on the sulfur(IV) concentration. At high pH values the uptake rate for sulfur(IV) is drop-size dependent. However, the observed concentration ratios for formaldehyde cannot be fully explained by the adduct formation. Finally, it is estimated that mixing effects, i.e., the combination of individual droplets into a bulk sample, have a minor influence (<15%) on the measured heterogeneities.

aqueous phase chemistry fog formaldehyde modelling organic acid uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ang, C. C., Lipari, F., and Swarin, S., 1987: Determination of hydroxymethanesulfonate in wet deposition samples, Environ. Sci. Technol. 21, 102-105.Google Scholar
  2. Audiffren, N., Renard, M., Buisson, E., and Chaumerliac, N., 1998: Deviations from the Henry's Law equilibrium during cloud events: A numerical approach of the mass transfer between phases and its specific numerical effects, Atmos. Res. 49, 139-161.Google Scholar
  3. Barlow, S., Buxton, G. V., Murray, S. A., and Salmon, G. A., 1997: Free-radical-induced oxidation of hydroxymethanesulfonate in aqueous solution, Part 1: A pulse radiolysis study of the reactions of OH and SO4, J. Chem. Soc. Faraday Trans. 93(20), 3637-3640.Google Scholar
  4. Bator, A. and Collett Jr., J. L., 1997: Cloud chemistry varies with drop size, J. Geophys. Res. 102, 28071-28078.Google Scholar
  5. Beilke, S. and Gravenhorst, G., 1978: Heterogeneous SO2-oxidation in the droplet phase, Atmos. Environ. 12, 231-239.Google Scholar
  6. Betterton, E. A. and Hoffmann, M. R., 1988: Oxidation of aqueous SO2 by peroxymonosulfate, J. Phys. Chem. 92, 5962-5965.Google Scholar
  7. Boyce, S. D. and Hoffmann, M. R., 1984: Kinetics and mechanism of the formation of hydroxymethane-sulfonic acid at low pH, J. Phys. Chem. 88, 4740-4746.Google Scholar
  8. Chin, M. and Wine, P. H., 1994: A temperature-dependent competitive kinetics study of the aqueousphase reactions of OH radicals with formate, formic acid, acetate, acetic acid and hydrated formaldehyde, in G. R. Helz, R. G. Zepp, and D. G. Crosby (ed.), Aquatic and Surface Photochemistry, Lewis Publishers, Boca Raton, pp. 85-96.Google Scholar
  9. Collett Jr., J. L., Bator, A., Rao, X., and Demoz, B. B., 1994: Acidity variations across the cloud drop size spectrum and their influence on rates of atmospheric sulfate production, Geophys. Res. Lett. 21, 2393-2396.Google Scholar
  10. Collett Jr., J. L., Hoag, K. J., Sherman, D. E., Bator, A., and Richards, L. W., 1999a: Spatial and temporal variations in San Joaquin Valley fog chemistry, Atmos. Environ. 33, 129-140.Google Scholar
  11. Collett Jr., J. L., Hoag, K. J., Rao, X.,and Pandis, S. N., 1999b: Internal buffering in San Joaquin Valley fog drops and its influence on aerosol processing, Atmos. Environ. 33, 4833-4847.Google Scholar
  12. Davidovits, M., Hu, J. H., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1995: Entry of gas molecules into liquids, Faraday Discuss. 100, 65-82.Google Scholar
  13. Demoz, B. B., Collett Jr., J. L., and Daube Jr., B. C., 1996: On the design and performance of the California institute of technology cloudwater collector, Atmos. Res. 41, 47-62.Google Scholar
  14. Dong, S. and Dasgupta, P. K., 1987: Fast fluorimetric flow-injection analysis of formaldehyde in atmospheric water, Environ. Sci. Technol. 21, 581-588.Google Scholar
  15. Ervens, B., Williams, J., Buxton, G. V., Salmon, G. A., Bydder, M., Dentener, F., George, C., Mirabel,P., Wolke, R., and Herrmann, H., 2003: CAPRAM2.4 (MODAC mechanism): An extended andcondensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res. 108,D144426_doi: 10.1029/2002 JD002202.Google Scholar
  16. Facchini, M. C., Lind, J., Orsi, G., and Fuzzi, S., 1990: The chemistry of carbonyl compounds in the Po Valley fog water, Sci. Total Environ. 91, 79-86.Google Scholar
  17. Feingold, G. and Chuang, P. Y., 2002: Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate, J. Atmos. Sci. 59, 2006-2018.Google Scholar
  18. Fuller, E. N., 1986: Diffusion coefficients for binary gas systems at low pressures: Empirical correlations, in C. Reid et al.(eds), Properties of Gases and Liquids, McGraw Hill, New York, p. 587.Google Scholar
  19. Gill, P. S., Graedel, T. E., and Weschler, C. J., 1983: Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snow flakes, Rev. Geophys. Space Phys. 21, 903-920.Google Scholar
  20. Hanson, D., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R., 1992: Measurement of OH and HO2 radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem. 96, 4979-4985.Google Scholar
  21. Harned, H. S. and Owen, B. B., 1958, The Physical Chemistry of Electrolytic Solutions(3rd edn), Reinhold, New York.Google Scholar
  22. Hegg, D. A., Gao, S., and H. Jonsson, 2002: Measurements of selected dicarboxylic acids in marine cloud water, Atmos. Res. 62, 1-10.Google Scholar
  23. Herckes, P., Lee, T., Trenary, L., Kang, G., Chang, H., and Collett Jr., J. L., 2002a: Organic matter in San Joaquin Valley radiation fogs, Environ. Sci. Technol. 36, 4777-4782.Google Scholar
  24. Herckes, P., Hannigan, M. P., Trenary, L., Lee, T., and Collett Jr., J. L., 2002b: Organic compounds in radiation fogs in Davis (California), Atmos. Res. 64, 99-108.Google Scholar
  25. Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R., 2000: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem. 36, 231-284.Google Scholar
  26. Hoffmann, M. R., 1986: On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone, Atmos. Environ. 20, 1145-1154.Google Scholar
  27. Huthwelker, T. and Peter, T., 1996: Analytical description of gas transport across an interface with coupled diffusion in two phases, J. Chem. Phys. 105, 1661-1667.Google Scholar
  28. Jacob, D. J., 1986: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res. 91, 9807-9826.Google Scholar
  29. Keene, W. C., Mosher, B. W., Jacob, D. J., Munger, J. W., Talbot, R. W., Artz, R. S., Maben, J. R., Daube Jr., B.C., and Galloway, J. N., 1995: Carboxylic acids in clouds at a high-elevation forested site in central Virginia, J. Geophys. Res. 100, 9345-9357.Google Scholar
  30. Khan, I. and Brimblecombe, P., 1992: Henry's Law constants of low molecular weight (<130) organic acids, J. Aerosol Sci. 23, S897-S990.Google Scholar
  31. Khare, P., Kumar, N., Kumari, K. M., and Srivastava, S. S., 1999: Atmospheric formic and acetic acids: An overview, Rev. Geophys. 37, 227-248.Google Scholar
  32. Khwaja, H., A., Brudnoy, S., and Husain L., 1995: Chemical characterization of three summer cloud episodes at Whiteface Mountain, Chemosphere 31, 3357-3381.Google Scholar
  33. Kläning, U. K., Sehested, K., and Holcman, J., 1985: Standard Gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for the reaction ClO2 + O3 = O3 + ClO2, J. Phys. Chem. 89, 760-763.Google Scholar
  34. Klippel, W. and Warneck, P., 1980: The formaldehyde content of the atmospheric aerosol, Atmos. Environ. 14, 809-818.Google Scholar
  35. Kok, G. L., Gitlen, S. N., and Lazrus, A. L., 1986: Kinetics of the formation and decomposition of hydroxymethanesulfonate, J. Geophys. Res. 91, 2801-2804.Google Scholar
  36. Laj, P., Fuzzi, S., Lazzari, A., Ricci, L., Orsi, G., Berner, A., Dusek, U., Schell, D., Guenther, A., Wendisch, M., Wobrock, W., Frank, G., Martinsson, B., and Hillamo, R., 1998: The size-dependent chemistry of fog droplets, Contrib. Atmos. Phys. 71, 115-130.Google Scholar
  37. Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., and Aumont, B., 2000: A model for tropospheric multiphase chemistry: Application to one cloudy event during the CIME experiment, Atmos. Environ. 34, 5015-5036.Google Scholar
  38. Lide, D. R. (ed.), 2000: Handbook of Chemistry and Physics(81st edn), CRC Press, New York.Google Scholar
  39. Löflund, M., Kasper-Giebl, A., Schuster, B., Giebl, H., Hitzenberger, R., and Puxbaum, H., 2002: Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water, Atmos. Environ. 36, 1553-1558.Google Scholar
  40. Ludwig, J., and Klemm, O., 1988: Organic acids in different size classes of atmospheric particulate material, Tellus 40B, 340-347.Google Scholar
  41. Millet, M., Sanusi, A., and Wortham, H., 1996: Chemical composition of fogwater in an urban area: Strasbourg (France), Environ. Poll. 94, 345-354.Google Scholar
  42. Millet, M., Wortham, H., Sanusi, A., and Mirabel, P., 1997: Low-molecular-weight organic-acids in fogwater in an urban area - Strasbourg (France), Sci. Total Environ. 206, 57-65.Google Scholar
  43. Munger, J. W., Collett, Jr., J. L., Daube Jr., B., and Hoffmann, M. R., 1989a: Carboxylic acids and carbonyl compounds in southern California clouds and fogs, Tellus 41B, 230-242.Google Scholar
  44. Munger, J.W., Collett Jr., J. L., Daube Jr., B., and Hoffmann, M. R., 1989b: Chemical composition of coastal stratus clouds: Dependence on droplet size and distance from the coast, Atmos. Environ. 23, 2305-2320.Google Scholar
  45. Munger, J. W., Collett Jr., J. L., Daube Jr., B., and Hoffmann, M. R., 1990: Fogwater chemistry at Riverside, California. Atmos. Environ. 24B, 185-205.Google Scholar
  46. Nathanson, G. M., Davidovits, P., Worsnop, D. R., and Kolb, C. E., 1996: Dynamics and kinetics at the gas-liquid interface, J. Phys. Chem. 100, 13007-13020.Google Scholar
  47. Neusüß, C. Pelzing, M., Plewka, A., and Herrmann, H., 2000: A new analytical approach for sizeresolved speciation of organic compounds in atmospheric aerosol particles: Methods and first results, J. Geophys. Res. 105, 4513-4527.Google Scholar
  48. Noone, K. J., Ogren, J. A., Hallberg, A., Heintzenberg, J., Hansson, H.-C., Svenigsson, I. B., Wiedensohler, A., Fuzzi, S., Facchini, M. C., Arends, B. G., and Berner, A., 1992: Changes in aerosol size-and phase distributions due to physical and chemical processes in fog, Tellus 44B, 489-504.Google Scholar
  49. Ogren, J. A. and Charlson, R. J., 1992: Implications for models and measurements of chemical inhomogeneities among cloud droplets, Tellus 44B, 208-225.Google Scholar
  50. Ogren, J. A., Noone, K. J., Hallberg, A., Heintzenberg, J., Schell, D., Berner, A., Solly, I., Kruisz, C., Reischl, G., Arends, B. G., and Wobrock, W., 1992: Measurements of the size dependence of the concentration of non-volatile material in fog droplets, Tellus 44B, 570-580.Google Scholar
  51. Olson, T. M. and Hoffmann, M. R., 1989: Hydroxyalkylsulfonate formation: Its role as a S(IV) reservoir in atmospheric water droplets, Atmos. Environ. 23, 985-997.Google Scholar
  52. Pandis, S. N., Seinfeld, J. H., and Pilinis, C., 1990: Chemical composition differences in fog and cloud droplets of different sizes, Atmos. Environ. 24A, 1957-1969.Google Scholar
  53. Pandis, S. N. and Seinfeld, J. H., 1991: Should bulk cloudwater or fogwater samples obey Henry's Law?, J. Geophys. Res. 96, 10791-10798.Google Scholar
  54. Podzimek, J. and Saad, A. N., 1975: Retardation of condensation nuclei growth by surfactant, J. Geophys. Res. 80, 3386-3392.Google Scholar
  55. Reilly, J. E., Rattigan, O. V., Moore, K. F., Judd, C., Sherman, D. E., Dutkievicz, V. A., Kreidenweis, S. M., Husain, L., and Collett Jr., J. L., 2001: Drop size dependent S(IV) oxidation in chemically heterogeneous radiation fogs, Atmos. Environ. 35, 5717-5728.Google Scholar
  56. Saxena, P. and Hildemann, L. M., 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57-109.Google Scholar
  57. Schwartz, S., 1986: Mass transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds, in Jaeschke, W. (ed.), Chemistry of Multiphase Atmospheric Systems, NATO ASI Series,Springer, Berlin, pp. 415-471.Google Scholar
  58. Swartz, E., Boniface, J., Tchertkov, I., Rattigan, O. V., Robinson, D. V., Davidovits, P., Worsnop, D. R., Jayne, J. T., and Kolb, C. E., 1997: Horizontal bubble train apparatus for heterogeneous chemistry studies: Uptake of gas phase formaldehyde, Environ. Sci. Technol. 37, 2634-2641.Google Scholar
  59. Voisin, D., Legrand, M., and Chaumerliac, N., 2000: Scavenging of acidic gases (HCOOH, CH3COOH, HNO3, HCl and SO2) and ammonia in mixed liquid-solid water clouds at the Puy de Dôme mountain (France), J. Geophys. Res. 105, 6817-6835.Google Scholar
  60. Warneck, P., 1999: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys. 1, 5471-5483.Google Scholar
  61. Winiwarter, W., Puxbaum, H., Facchini, M. C., Orsi, G., Beltz, N., Enderle, K., and Jaeschke, W., 1988: Organic acid gas and liquid-phase measurements in Po Valley fall-winter conditions in the presence of fog, Tellus 40B, 348-357.Google Scholar
  62. Winiwarter, W., Fierlinger, H., Puxbaum, H., Facchini, M. C., Arends, B. G., Fuzzi, S., Schell, D., Kaminski, U., Pahl, S., Schneider, T., Berner, A., Solly, I., and Kruisz, C., 1994: Henry's Law and the behavior of weak acids and bases in fog and clouds, J. Atmos. Chem. 19, 173-188.Google Scholar
  63. Worsnop, D. R., Morris, J. W., Shi, Q., Davidovits, P., and Kolb, C. E., 2002: A chemical kinetic model for reactive transformations of aerosol particles, Geophys. Res. Lett. 29(20), 1996.Google Scholar
  64. Wortham, H., Millet, M., Sanusi, A., and Mirabel, P., 1995: Methods of sampling, preservation and analysis of organic acids in atmospheric samples: A review, Analysis 23, 427-436.Google Scholar
  65. Yao, X., Fang, M., and Chan, C. K., 2002: Size distributions and formation of dicarboxylic acids in atmospheric particles, Atmos. Environ. 36, 2099-2107.Google Scholar
  66. Yu, S., 2000: Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): A review, Atmos. Res. 53, 185-217.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • B. Ervens
    • 1
  • P. Herckes
    • 2
  • G. Feingold
    • 3
  • T. Lee
    • 2
  • J. L. CollettJr.
    • 2
  • S. M. Kreidenweis
    • 2
  1. 1.Cooperative Institute for Research in the Atmosphere (CIRA)Colorado State UniversityFort CollinsU.S.A
  2. 2.Atmospheric Science DepartmentColorado State UniversityFort CollinsU.S.A
  3. 3.Environmental Technology LaboratoryNOAABoulderU.S.A

Personalised recommendations