The Tammar Wallaby: A Model to Study Putative Autocrine-Induced Changes in Milk Composition

  • Kevin Nicholas
  • Kaylene Simpson
  • Michael Wilson
  • Josephine Trott
  • Denis Shaw

Abstract

The marsupial newborn is immature and the mother has the capacity to alter milk composition significantly during lactation, presumably to meet the nutritional requirements of the developing young. Furthermore, macropodid marsupials may practice asynchronous concurrent lactation (ACL)7whereby the mother provides milk which differs in all the major components from adjacent mammary glands for two young of different ages. This phenomenon suggests that local regulation of mammary function, in addition to endocrine stimuli, is likely to be important for controlling milk composition. This paper explores the possibility that changes in sucking patterns of the young represent the first step in a mechanism to signal the mammary gland for putative autocrine-induced changes in milk composition.

Marsupial milk protein composition asynchronous concurrent lactation sucking patterns autocrine regulation milk protein genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. H. Tyndale-Biscoe and P. A. Janssens (1988). The Developing Marsupial: Models for Biomedical Research. Springer-Verlag, Heidelberg.Google Scholar
  2. 2.
    B. Green (1984). Composition of milk and energetics of growth in marsupials. In M. Peaker, R. G. Vernon, and C. H. Knight (eds.), Physiological Strategies in Lactation, Symposia of the Zoological Society of London, Academic Press. pp. 369–387.Google Scholar
  3. 3.
    B. Green and J. Merchant (1988). The composition of marsupial milk. In C. H. Tyndale-Biscoe and P. A. Janssens (eds.), The Developing Marsupial: Models for Biomedical Research, Springer-Verlag, Heidelberg, pp. 41–54.Google Scholar
  4. 4.
    K. R. Nicholas (1988a). Control of milk protein synthesis in the tammar wallaby: a model system to study prolactin-dependent development. In C. H. Tyndale-Biscoe and P. A. Janssens (eds.), The Developing Marsupial: Models for Biomedical Research, Springer-Verlag, Heidelberg, pp. 68–85.Google Scholar
  5. 5.
    K. R. Nicholas (1988b). Asynchronous dual lactation in a marsupial, the tammar wallaby (M. eugenii). Biochem. Biophys. Res. Commu. 154:529–536.Google Scholar
  6. 6.
    K. R. Nicholas, C. J. Wilde, P. H. Bird, and K. A. K. Hendry (1994). Asynchronous expression of milk protein genes during lactation in the tammar wallaby (Macropus eugenii). Trends in Comparat. Biochem. Physiol. Res. 1:959–972.Google Scholar
  7. 7.
    P. Bird, K. A. K. Hendry, D. Shaw, C. J. Wilde, C. and K. R. Nicholas (1994). Progressive changes in milk protein gene expression and prolactin binding during lactation in the tammar wallaby (Macropus eugenii). J. Mol. Endocrinol. 13:117–125.Google Scholar
  8. 8.
    K. R. Nicholas, C. J. Wilde, P. H. Bird, K. A. K. Hendry, K. Tregenza and B. Warner (1995). Asynchronous concurrent secretion of milk proteins in the tammar wallaby (Macropus eugenii). In C. J. Wilde, M. Peaker, and C. H. Knight (eds.), Intercellular Signalling in the Mammary Gland. Plenum Press, New York. pp. 153–170.Google Scholar
  9. 9.
    H. Dove and S. J. Cork (1989). Lactation in the tammar wallaby (Macropus eugenii). I. Milk consumption and the algebraic description of the lactation curve. J. Zool., London 219:385–397.Google Scholar
  10. 10.
    C. J. Wilde, C. V. P. Addey, L. M. Boddy-Finch, and M. Peaker (1995). Autocrine control of milk secretion: from concept to application. In C. J. Wilde, M. Peaker, and C. H. Knight (eds.), Intercellular Signalling in the Mammary Gland. Plenum Press, New York. pp. 227–237.Google Scholar
  11. 11.
    F. Stewart (1984). Mammogenesis and changing prolactin receptor concentrations in the mammary glands of the tammar wallaby (Macropus eugenii). J. Reprod. Fertil. 71:131–148.Google Scholar
  12. 12.
    L. Findlay and M. B. Renfree (1984). Growth, development and secretion of the mammary gland of macropodid marsupials. In M. Peaker, R. G. Vernon, and C. H. Knight (eds.), Physiological Strategies in Lactation, Symposia of the Zoological Society of London, Academic Press. pp. 403–432.Google Scholar
  13. 13.
    H. L. Nakhasi and P. K. Qasba (1979). Quantitation of milk proteins and their mRNAs in rat mammary gland at various stages of gestation and lactation. J. Biol. Chem. 254:6016–6025.Google Scholar
  14. 14.
    A. A. Hobbs, D. A. Richards, D. J. Kessler, and J. F. Rosen (1982). Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 257:3598–3605.Google Scholar
  15. 15.
    P. Gaye, D. Hue-Delahaie, J. C. Mercier, S. Soulier, J. L. Vilotte, and J. P. Furet (1986). Ovine β-lactoglobulin messenger RNA: Nucleotide sequence and mRNA levels during functional differentiation of the mammary gland. Biochimie 68:1097–1107.Google Scholar
  16. 16.
    S. Harris, M. McClenaghan, J. P. Simons, S. Ali and A. J. Clark (1991). Developmental regulation of sheep β-lactoglobulin gene in the mammary gland of transgenic mice. Develop. Genet. 12:299–307.Google Scholar
  17. 17.
    A. Shamay, V. G. Pursel, R. J. Wall, and L. Hennighausen (1992). Induction of lactogenesis in transgenic virgin pigs: evidence for gene and integration site-specific hormonal regulation. Mol. Endocrinol. 6:191–197.Google Scholar
  18. 18.
    Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106.Google Scholar
  19. 19.
    N. J. Kuhn (1977). Lactogenesis: the search for trigger mechanisms in different species. In M. Peaker (ed.), Comparative Aspects of Lactation. Academic Press, New York, pp. 165–192.Google Scholar
  20. 20.
    K. R. Nicholas and C. H. Tyndale-Biscoe (1985). Prolactin-dependent accumulation of α-lactalbumin in mammary gland explants from the pregnant tammar wallaby (Macropus eugenii). J. Endocrinol. 106:337–342.Google Scholar
  21. 21.
    M. Messer and B. Green (1979). Milk carbohydrates of marsupials II. Quantitative and qualitative changes in milk carbohydrates during lactation in the tammar wallaby (Macropus eugenii). Australian J. Biol. Sci. 32:519–531.Google Scholar
  22. 22.
    M. Messer and K. R. Nicholas (1991). Biosynthesis of marsupial milk oligosaccharides: characterization and developmental changes of two galactosyltransferases in lactating mammary glands of the tammar wallaby (Macropus eugenii). Biochim. Biophys. Acta. 1077:79–85.Google Scholar
  23. 23.
    M. Messer and C. Elliott (1987). Changes in α-lactalbumin, total lactose, UDP-galactose hydrolase and other factors in tammar wallaby (Macropus eugenii) milk during lactation. Australian J. Biol. Sci. 40:37–46.Google Scholar
  24. 24.
    C. P. Piotte and M. R. Grigor (1996). A novel marsupial protein expressed by the mammary gland only during Early Lactation and Related to the Kunitz Proteinase Inhibitors. Arch. Biochem. Biophys. 330:59–64.Google Scholar
  25. 25.
    T. Urashima, M. Messer, and W. A. Bubb (1992). Biosynthesis of marsupial milk oligosaccharides II; characterization of a β6-N-acetylglucosaminyltransferase in lactating mammary glands of the tammar wallaby, Macropus eugenii. Biochem. Biophys. Acta 1117:223–231.Google Scholar
  26. 26.
    C. Collet and R. Joseph (1989). Molecular cloning and characterization of a novel marsupial milk protein gene. Biochem. Biophys. Res. Commun. 164:1380–1383.Google Scholar
  27. 27.
    C. Collet and R. Joseph (1993). A novel member of the lipocalin superfamily: tammar wallaby late-lactation protein. Biochem. Biophys. 1167:219–222.Google Scholar
  28. 28.
    K. R. Nicholas, M. Messer, C. Elliott, F. Maher, and D. C. Shaw (1987). A novel whey protein synthesized only in late lactation by the mammary gland from the tammar (Macropus eugenii). Biochem. J. 241:891–904.Google Scholar
  29. 29.
    C. J. Wilde and M. Peaker (1990b). Autocrine control in milk secretion. J. Agricult. Sci. Camb. 114:235–238.Google Scholar
  30. 30.
    D. J. Boness (1990). Fostering behaviour in Hawaiian monk seals: is there a reproductive cost? Behav. Ecol. Sociobiol. 27:113–122.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Kevin Nicholas
    • 1
  • Kaylene Simpson
    • 1
    • 2
  • Michael Wilson
    • 1
    • 3
  • Josephine Trott
    • 1
    • 4
  • Denis Shaw
    • 5
  1. 1.Division of Molecular Biology and GeneticsVictorian Institute of Animal ScienceAttwoodAustralia
  2. 2.School of AgricultureLaTrobe UniversityBundooraAustralia
  3. 3.Human Immunogenetics LaboratoryImperial Cancer Research FundLondonUnited Kingdom
  4. 4.Department of ZoologyMelbourne UniversityParkvilleAustralia
  5. 5.Protein Biochemistry GroupJohn Curtin School of Medical Research, Australian National UniversityAustralian Capital TerritoryAustralia

Personalised recommendations