Climatic Change

, Volume 61, Issue 1–2, pp 31–44

Burning Buried Sunshine: Human Consumption of Ancient Solar Energy

  • Jeffrey S. Dukes
Article

Abstract

Fossil fuels developed from ancient deposits of organic material, and thus can be thought of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using published biological, geochemical, and industrial data, I estimate the amount of photosynthetically fixed and stored carbon that was required to form the coal, oil, and gas that we are burning today. Today's average U.S. Gallon (3.8 L) of gasoline required approximately 90 metric tons of ancient plant matter as precursor material. The fossil fuels burned in 1997 were created from organic matter containing 44 × 1018 g C, which is>400 times the net primary productivity (NPP) of the planet's current biota. As stores of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I conservatively estimate that replacing the energy humans derive from fossil fuels with energy from modern biomass would require 22% of terrestrial NPP, increasing the human appropriation of this resource by ∼50%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arioglu, E.: 1994, 'Outlook for Coal Reserves, Production, Consumption, International Coal Trade', in Kural, O. (ed.), Coal: Resources, Properties, Utilization, Pollution, Istanbul Technical University, Istanbul, pp. 183–195.Google Scholar
  2. Bordenave, M. L.: 1993, 'The Sedimentation of Organic Matter', in Bordenave, M. L. (ed.), Applied Petroleum Geochemistry, Éditions Technip, Paris, pp. 15–76Google Scholar
  3. Brady, M. A.: 1997, 'Effects of Vegetation Changes on Organic Matter Dynamics in Three Coastal Peat Deposits in Sumatra, Indonesia', in Rieley, J. O. and Page, S. E. (eds), Biodiversity and Sustainability of Tropical Peatlands, Samara Publishing Limited, Cardigan, pp. 113–134Google Scholar
  4. Bralower, T. J. and Thierstein, H. R.: 1987, 'Organic Carbon and Metal Accumulation Rates in Holocene and Mid-Cretaceous Sediments: Palaeoceanographic Significance', in Brooks, J. and Fleet, A. J. (eds.), Marine Petroleum Source Rocks, Geological Society Special Publication No. 26, pp. 345–369.Google Scholar
  5. Cameron, C. C., Esterle, J. S., and Palmer, C. A.: 1989, 'The Geology, Botany and Chemistry of Selected Peat-Forming Environments from Temperate and Tropical Latitudes', Int. J. Coal Geology 12, 105–156.Google Scholar
  6. Canfield, D. E.: 1994, 'Factors Influencing Organic Carbon Preservation in Marine Sediments', Chem. Geol. 114, 315–329.Google Scholar
  7. Cobb, J. C. and Cecil, C. B. (eds.): 1993, Modern and Ancient Coal-Forming Environments, Geological Society of America Special Paper 286, Boulder, CO.Google Scholar
  8. Cook, J. H., Beyea, J., and Keeler, K. H.: 1991, 'Potential Impacts of Biomass Production in the United States on Biological Diversity', Ann. Rev. Energy and the Environment 16, 401–431.Google Scholar
  9. Demaison, G.: 1993, 'Contributions of Geochemistry to Exploration Strategy', in Bordenave, M. L. (ed.), Applied Petroleum Geochemistry, Éditions Technip, Paris, pp. 489–503.Google Scholar
  10. Energy Information Administration: 2000, Electric Power Annual 1999: Vol. II, U.S. Department of Energy, Washington.Google Scholar
  11. Ferng, J.-J.: 2002, 'Toward a Scenario Analysis Framework for Energy Footprints', Ecological Economics 40, 53–69.Google Scholar
  12. Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: 1998, 'Primary Production of the Biosphere: Integrating Terrestrial and Ooceanic Components', Science 281, 237–240.Google Scholar
  13. Gálinas, Y., Baldock, J. A., and Hedges, J. I.: 2001, 'Organic Carbon Composition of Marine Sediments: Effect of Oxygen Exposure on Oil Generation Potential', Science 294, 145–148.Google Scholar
  14. Giampietro, M., Ulgiati, S., and Pimentel, D.: 1997, 'Feasibility of Large-Scale Biofuel Production: Does an Enlargement of Scale Change the Picture?', BioScience 47, 587–600.Google Scholar
  15. Hall, D. O., Mynick, H. E., and Williams, R. H.: 1991, 'Cooling the Greenhouse with Bioenergy', Nature 353, 11–12.Google Scholar
  16. Hedges, J. I. and Keil, R. G.: 1995, 'Sedimentary Organic Matter Preservation: An Assessment and Speculative Synthesis', Marine Chemistry 49, 81–115.Google Scholar
  17. Kheshgi, H. S., Prince, R. C., and Marland, G.: 2000, 'The Potential of Biomass Fuels in the Context of Global Climate Change: Focus on Transportation Fuels', Ann. Rev. Energy and the Environment 25, 199–244.Google Scholar
  18. Kiehl, J. T. and Trenberth, K. E.: 1997, 'Earth's Annual Global Mean Energy Budget', Bull. Amer. Meteorol. Soc. 78, 197–208.Google Scholar
  19. Klemme, H. D. and Ulmishek, G. F.: 1991, 'Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors', The American Association of Petroleum Geologists Bulletin 75, 1809–1851.Google Scholar
  20. Kopp, O. C. and Bennett III, M. E.: 2001, 'A Comparison of the Loss of CO and CO2 during Coalification', Int. J. Coal Geology 47, 63–66.Google Scholar
  21. Kopp, O. C., Bennett III, M. E., and Clark, C. E.: 2000, 'Volatiles Lost during Coalification', Int. J. Coal Geology 44, 69–84.Google Scholar
  22. Larcher, W.: 1995, Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, Springer-Verlag, Berlin.Google Scholar
  23. Larson, E. and Marrison, C. I.: 1997, 'Economic Scales for First-Generation Biomass-Gasifier/gas Turbine Combined Cycles Fueled from Energy Plantations', Journal of Engineering for Gas Turbines and PowerTransactions of the American Society of Mechanical Engineers 119, 285–290.Google Scholar
  24. Lϋckge, A., Boussafir, M., Lallier-Verg— From Source to Trap: AAPG Memoir 60, American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 329–338.Google Scholar
  25. Marland, G., Boden, T. A., and Andres, R. J.: 2001, 'Global, Regional, and National CO2 Emissions', Trends: A Compendium of Data on Global Change, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.Google Scholar
  26. Monteith, J. L.: 1977, 'Climate and the Efficiency of Crop Production in Britain', Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 281, 277–284.Google Scholar
  27. Moore, P. D.: 1987, 'Ecological and Hydrological Aspects of Peat Formation', in Scott, A. C. (ed.), Coal and Coal-Bearing Strata: Recent Advances, Blackwell Scientific, Oxford, pp. 7–15.Google Scholar
  28. Moore, P. D.: 1989, 'The Ecology of Peat-Forming Processes: A Review', in Lyons, P. C. and Alpern, B. (eds), Peat and Coal: Origin, Facies, and Depositional Models, pp. 89–103.Google Scholar
  29. Mott, R. A.: 1942, 'The Origin and Composition of Coals', Fuel in Science and Practice 21, 129–135.Google Scholar
  30. Mott, R. A.: 1943, 'The Origin and Composition of Coals', Fuel in Science and Practice 22, 20–26.Google Scholar
  31. Neuzil, S. G.: 1997, 'Onset and Rate of Peat and Carbon Accumulation in Four Domed Ombrogenous Peat Deposits, Indonesia', in Rieley, J. O. and Page, S. E. (eds.), Biodiversity and Sustainability of Tropical Peatlands, Samara Publishing Limited, Cardigan, pp. 55–72.Google Scholar
  32. Paisley, M. A. and Anson, D.: 1998, 'Biomass Gasification for Gas Turbine-Based Power Generation', Journal of Engineering for Gas Turbines and PowerTransactions of the American Society of Mechanical Engineers 120, 284–288.Google Scholar
  33. Peters, K. E. and Cassa, M. R.: 1994, 'Applied Source Rock Geochemistry', in Magoon, L. B. and Dow, W. G. (eds.), The Petroleum SystemFrom Source to Trap: AAPG Memoir 60, American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 93–120.Google Scholar
  34. Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., and Klooster, S. A.: 1993, 'Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data', Global Biogeochem. Cycles 7, 811–841.Google Scholar
  35. Rojstaczer, S., Sterling, S. M., and Moore, N. J.: 2001, 'Human Appropriation of Photosynthesis Products', Science 294, 2549–2552.Google Scholar
  36. Saugier, B., Roy, J., and Mooney, H. A.: 2001, 'Estimations of Global Terrestrial Productivity: Converging towards a Single Number?', in Roy, J., Saugier, B., and Mooney, H. A. (eds.), Terrestrial Global Productivity, Academic Press, San Diego, CA, pp. 543–557Google Scholar
  37. Schimel, D. S.: 1995, 'Terrestrial Ecosystems and the Carbon Cycle', Global Change Biology 1, 77–91.Google Scholar
  38. Selley, R. C.: 1998, Elements of Petroleum Geology, Academic Press, San Diego, CA.Google Scholar
  39. Supardi, Subekty, A. D., and Neuzil, S. G.: 1993, 'General Geology and Peat Resources of the Siak Kanan and Bengkalis Island Peat Deposits, Sumatra, Indonesia', in Cobb, J. C. and Cecil, C. B. (eds.), Modern and Ancient Coal-Forming Environments, Geological Society of America Special Paper 286, Boulder, CO, pp. 45–61.Google Scholar
  40. Taylor, G. H., Teichmϋller, M., Davis, A., Diessel, C. F. K., Littke, R., and Robert, P.: 1998, Organic Petrology, Gebrϋder Borntraeger, Berlin.Google Scholar
  41. Tissot, B. P. and Welte, D. H.: 1984, Petroleum Formation and Occurrence, Springer-Verlag, Berlin.Google Scholar
  42. Trinnaman, J. and Clarke, A. (eds.): 1998, Survey of Energy Resources, World Energy Council, London.Google Scholar
  43. U.S. Department of Energy, Office of Utility Technologies and the Electric Power Research Institute: 1997, 'Overview of Solar Thermal Technologies', Renewable Energy Technology Characterizations, EPRI, Palo Alto, CA, pp. 5.1–5.5.Google Scholar
  44. United Nations: 2000, 1997 Energy Statistics Yearbook, United Nations, New York.Google Scholar
  45. Vandenbroucke, M.: 1993, 'Migration of Hydrocarbons', in Bordenave, M. L. (ed.), Applied Petroleum Geochemistry, Éditions Technip, Paris, pp. 123–148.Google Scholar
  46. Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., and Matson, P. A.: 1986, 'Human Appropriation of the Products of Photosynthesis', BioScience 36, 368–373.Google Scholar
  47. Wackernagel, M., Lewan, L., and Hansson, C.: 1999, 'Evaluating the Use of Natural Capital with the Ecological Footprint: Applications in Sweden and Subregions', Ambio 28, 604–612.Google Scholar
  48. Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., Monfreda, C., Loh, J., Myers, N., Norgaard, R., and Randers, J.: 2002, 'Tracking the Ecological Overshoot of the Human Economy', Proc. Nat. Acad. Sci. 99, 9266–9271.Google Scholar
  49. World Coal Institute: 2000, Coal: Power for Progress, World Coal Institute, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jeffrey S. Dukes
    • 1
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityU.S.A.

Personalised recommendations