Advertisement

Journal of Protein Chemistry

, Volume 16, Issue 6, pp 651–660 | Cite as

Inhibition of Tryptase TL2 from Human T4+ Lymphocytes and Inhibition of HIV-1 Replication in H9 Cells by Recombinant Aprotinin and Bikunin Homologues

  • Thomas Brinkmann
  • Jochen Schäfers
  • Lutz Gürtler
  • Hiroshi Kido
  • Yasuharu Niwa
  • Nobuhiko Katunuma
  • Harald Tschesche
Article

Abstract

The serine esterase TL2 from human T4+ lymphocytes is a binding component to HIV-1 glycoprotein gp120 and seems to play a role in the HIV-1 infection mechanism. Recombinant variants of the Kunitz-type serine proteinase inhibitor aprotinin were investigated for their ability to inhibit tryptase TL2 and the binding of gp120 to this enzyme. Furthermore, the viral replication of HIV-1 was investigated in H9 cell cultures under the influence of recombinant aprotinin and bikunin variants. In contrast to native aprotinin, the recombinant variant [Arg15, Phe17, Glu52]aprotinin with a reactive-site sequence homologous to the V3 loop of HIV-1 gp120 showed a specific inhibition of tryptase TL2 (>80%). However, the [Leu15, Phe17, Glu52]aprotinin variant with hydrophobic subsites was the most potent inhibitor of the binding of gp120 to tryptase TL2 (68%). Our results show that the enzyme activity of purified tryptase TL2 is inhibited not only by variants with basic amino acids, but also those with hydrophobic residues in the reactive-site region. Therefore, tryptase TL2 is not a typical trypsin-like or chymotrypsin-like protease. Investigations on inhibition of HIV-1 replication in H9 cell cultures showed that tryptase TL2 is involved in the mechanism of virus internalization into human lymphocytes. The [Leu15, Phe17, Glu52]aprotinin showed a significant retardation of syncytium formation over a period of 5 days in a 1 μM concentration. Similar investigations were performed with recombinant variants of bikunin, the light chain of human inter-α-trypsin inhibitor. Only the single-headed variant [Arg94]82bikunin inhibited slightly the syncytium formation over a period of 2 days in a 2.2 μM concentration. Wild-type bikunin and all full-length variants showed no effect, possibly due to steric hindrance by the second domain of the double-headed inhibitor.

Kunitz-type inhibitor aprotinin bikunin tryptase TL2 HIV infection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderer, F. A., and Hörnle, S. (1966). J. Biol. Chem. 241, 1568–1572.Google Scholar
  2. Auerswald, E. A., Schubert, A., Dolinar, M., Gürtler, L., and Deinhardt, F. (1991). Biomed, Biochim. Acta 50, 697–700.Google Scholar
  3. Benjouad, A., Chapuis, F., Fenouillet, E., and Gluckman, J.C. (1995). Virology 206, 457–464.Google Scholar
  4. Bode, W., Walter, J., Huber, R., Wenzel, H. R., and Tschesche, H. (1984). Eur. J. Biochem. 144, 185–190.Google Scholar
  5. Bolton, A. E., and Hunter, W.N. (1973). Biochem. J. 133, 529–539.Google Scholar
  6. Brinkmann, T., and Tschesche, H. (1990). Biol. Chem. Hoppe-Seyler 371(Suppl), 43–52.Google Scholar
  7. Brinkmann, T., Schnierer, S., and Tschesche, H. (1991). Eur. J. Biochem. 203, 95–99.Google Scholar
  8. Brinkmann, T., Schnierer, S., Newland, G., Walls, A., Lees, M., and Tschesche, H. (1993). Chem. Peptides Proteins 5/6, 589–599.Google Scholar
  9. Brinkmann, T., Kähnert, H., Prohaska, W., Nordfang, O., and Kleesiek, K. (1994). Eur. J. Clin Chem. Clin. Biochem. 32, 294–299.Google Scholar
  10. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhardt, M., di Marzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., and Landau, N. R. (1996). Nature 381, 661–666.Google Scholar
  11. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996). Nature 381, 667–673.Google Scholar
  12. Girard, T. J., Warren, L. A., Novotny, W. F., Likert, K. M., Brown, S. G., Miletich, J. P., and Broze Jr., G. J. (1989). Nature 338, 518–520.Google Scholar
  13. Green, N. M., and Work, E. (1953). Biochem J. 54, 347–352.Google Scholar
  14. Inoue, M., Hoshino, T., Fukuma, T., Niwa, Y., and Kido, H. (1994). Biochem. Biophys. Res. Commun. 201, 1390–1395.Google Scholar
  15. Kassell, B., and Laskowsky, Sr., M. (1965). Biochem. Biophys. Res. Commun. 20, 463–468.Google Scholar
  16. Kido, H., Yokogoshi, Y., and Katunuma, N. (1988). J. Biol. Chem. 263, 18104–18107.Google Scholar
  17. Kido, H., Fukutomi, A., and Katunuma, N. (1991a). J. Biol. Chem. 265, 21979–21985.Google Scholar
  18. Kido, H., Fukutomi, A., and Katunuma, N. (1991b). Biomed. Biochim. Acta 50, 781–789.Google Scholar
  19. Kido, H., Fukutomi, A., and Katunuma, N. (1991c). FEBS Lett. 286, 233–236.Google Scholar
  20. Kido, H., Kamoshita, K., Fukutomi, A., and Katunuma, N. (1993). J. Biol. Chem. 268, 13406–13413Google Scholar
  21. Nehete, P. N., Arlinghaus, R. B., and Sastry, K. J. (1993). J. Virol. 67, 6841–6846.Google Scholar
  22. Niwa, Y., Yano, M., Futaki, S., Okumura, Y., and Kido K. (1996). Eur. J. Biochem. 237, 64–70.Google Scholar
  23. Ratner, L., Haseltine, W., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Rafalski, J. A. Whitehorn, E. A., Baumeister, K., Ivanoff, L., Petteway, Jr., S. R., Pearson, M. L., Lautenberger, J. A., Papas, T. S., Ghrayeb, J., Chang, N. T., Gallo, R. C., and Wong-Staal, F. (1985). Nature 313, 277–284.Google Scholar
  24. Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C.-M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G., and Parmentier, M. (1996). Nature 382, 722–725.Google Scholar
  25. Schechter, I., and Berger, A. (1967). Biochem. Biophys. Res. Commun. 27, 157–162.Google Scholar
  26. Siekmann, J., Wenzel, H. R., Schröder, W., and Tschesche, H. (1988). Biol. Chem. Hoppe-Seyler 369, 157–163.Google Scholar
  27. Wächter, E., and Hochstrasser, K. (1981). Hoppe-Seyler's Z. Physiol. Chem. 362, 1351–1355.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Thomas Brinkmann
    • 1
  • Jochen Schäfers
    • 2
  • Lutz Gürtler
    • 3
  • Hiroshi Kido
    • 4
  • Yasuharu Niwa
    • 4
  • Nobuhiko Katunuma
    • 4
  • Harald Tschesche
    • 2
  1. 1.Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-WestfalenUniversitätsklinik der Ruhr-Universität BochumBad OeynhausenGermany
  2. 2.Lehrstuhl für Biochemie, Fakultät für ChemieUniversität BielefeldBielefeldGermany
  3. 3.Max-von-Pettenkofer-Institut für Hygiene und MikrobiologieLudwig-Maximilian UniversitätMünichGermany
  4. 4.Institute for Enzyme Research, Division of Enzyme ChemistryUniversity of TokushimaJapan

Personalised recommendations