Climatic Change

, Volume 61, Issue 1–2, pp 237–248 | Cite as

To What Extent Can Oxygen Isotopes in Tree Rings and Precipitation Be Used to Reconstruct Past Atmospheric Temperature? A Case Study

  • Martine Rebetez
  • Matthias Saurer
  • Paolo Cherubini


We analyzed the relationship between air temperature and oxygen isotopes measured in tree rings of silver fir (Abies alba Mill.) from along-term forest ecosystem research plot in the Swiss Jura mountains (LWF project). The oxygen isotope data were compared with a century-long meteorological series of air temperature data. Measurements of oxygen isotope ratios in precipitation were also used for comparison. Results show that the late-wood tree-ring series is significantly correlated with May to August temperatures. Correlations were higher for maximum (daytime) air temperature and even better for air temperature measured on rainy days only. We stress that trends in maximum temperature series for this time of the year, like trends in oxygen isotope ratios series from tree rings, are completely different from trends in yearly mean temperature. Indeed, maximum temperature trends during the vegetation period slightly decreased during the 20thcentury, whereas yearly means increased strongly.


Alba Oxygen Isotope Tree Ring Ecosystem Research Oxygen Isotope Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. T., Bernasconi, S. M., McKenzie J. A., and Saurer, M.: 1998, 'Oxygen and Carbon Isotopic Record of Climate Variability in Tree-Ring Cellulose (Picea abies): An Example from Central Switzerland (1913–1995)', J. Geophys. Res. 103, 31625–31636.Google Scholar
  2. Borella S., Leuenberger, M., and Saurer, M.: 1999, '?18O Analysis in Tree Rings: Wood-Cellulose Comparison and Method Dependent Sensitivity', J. Geophys. Res. 104, 19267–19273.Google Scholar
  3. Briffa K. R. and Osborn T.: 2002, 'Blowing Hot and Cold', Science, 295, 2227–2228.Google Scholar
  4. Burk, R. L. and Stuiver, M.: 1981, 'Oxygen Isotope Ratios in Trees Reflect Mean Annual Temperature and Humidity', Science 211, 1417–1419.Google Scholar
  5. Dansgaard, W.: 1964, 'Stable Isotopes in Precipitation', Tellus 16B, 436–438.Google Scholar
  6. Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., and Folland, C. K.: 1997, 'Maximum and Minimum Temperature Trends for the Globe', Science 277, 364–367.Google Scholar
  7. Edwards, T. W. D. and Fritz, P.: 1986, 'Assessing Meteoric Water Composition and Relative Humidity from 18O and 2H in Wood Cellulose; Paleoclimatic Implications for Southern Ontario, Canada', Applied Geochemistry 1, 715–723.Google Scholar
  8. Esper J., Cook E. R., and Schweingruber, F. H.: 2002, 'Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability?', Science 295, 2250–2253.Google Scholar
  9. Gonfiantini, R., Gratziu, S., and Tongiorgi, E.: 1965, 'Oxygen Isotopic Composition of Water in Leaves', in Isotopes and Radiation in Soil-Plant Nutrition Studies, International Atomic Energy Agency, Vienna, pp. 405–410.Google Scholar
  10. Hoefs, J.: 1987, Stable Isotope Geochemistry, 3rd edn., Springer-Verlag, New-York, 241 pp.Google Scholar
  11. IPCC: 2001, Climate Change 2001, The Scientific Basis, Cambridge Univ. Press, 884 pp.Google Scholar
  12. Jones, P. D., Marsh, R., Wigley T. M. L., and Peel, D. A.: 1993, 'Decadal Timescale Links between Antarctic Peninsula Ice-Core Oxygen-18, Deuterium and Temperature', Holocene 3, 14–26.Google Scholar
  13. Jones, P. D., Osborn, T. J., Briffa, K. R., Folland, C. K., Horton, E. B., Alexander, L. V., Parker, D. E., and Rayner, N. A., 2001, 'Adjusting for Sampling Density in Grid Box Land and Ocean Surface Temperature Time Series', J. Geophys. Res. 106, 3371–3380.Google Scholar
  14. Jouzel, J., Alley, R., Cuffey, K. M., Dansgaard, W., Johnsen, S. J., Grootes, P., Stuiver, M., Hoffmann, G., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M., and White, J.: 1997, 'Validity of the Temperature Reconstruction from Water Isotopes in Ice Cores', J. Geophys. Res. 102, 471–487.Google Scholar
  15. Karl, T., Jones, P., Knight, R., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K., Lindseay, J., Charlon, R., and Peterson T.: 1993, 'A New Perspective on Recent Global Warming: Asymetric Trends of Daily Maximum and Minimum Temperature', Bull. AMS 746, 1007–1023.Google Scholar
  16. Libby, L., Pandolfi, L. J., Payton, P. H., Marshall, J., Becker, B., and Gierz-Siebenlist, V.: 1976, 'Isotopic Tree Thermometers', Nature 261, 284–288.Google Scholar
  17. Lipp, J., Trimborn, P., Edwards, T., Waisel, Y., and Yakir, D.: 1996, 'Climatic Effects on the ?18O and ?13C of Cellulose in the Desert Tree Tamarix Jordanis', Geochimica et Cosmochimica Acta 60(17), 3305–3309.Google Scholar
  18. Mann, M. E., Bradley, R. S., and Hughes, M. K.: 1999, 'Northern Hemisphere Temperatures during the Past Millenium: Inferences, Uncertainties, and Limitations', Geophys. Res. Lett. 266, 759–762.Google Scholar
  19. McKenzie, J. A. and Hollander, D. J.: 1993, 'Oxygen-Isotope Record in Recent Carbonate Sediments from Lake Greifen, Switzerland (1750–1986): Application of Continental Isotopic Indicator for Evaluation of Changes in Climate and Atmospheric Circulation Patterns', in Swart P. (ed.), Climate Change in Continental Isotopic Records, Geophys. Monogr. Ser., AGU, Washington, D.C., 78, pp. 1–37.Google Scholar
  20. Rebetez, M.: 1999, 'Twentieth Century Trends in Drought in Southern Switzerland', Geophys. Res. Lett. 26–6, 755–758.Google Scholar
  21. Rebetez M.: 2001, 'Changes in Daily and Nightly Day-to-Day Temperature Variability during the Twentieth Century for Two Stations in Switzerland', Theor. Appl. Climatol. 69, 13–21.Google Scholar
  22. Rebetez, M. and Beniston, M.: 1998, 'Changes in Sunshine Duration are Correlated with Changes in Daily Temperature Range this Century. An Analysis of Swiss Climatological Data', Geophys. Res. Lett. 25–19, 3611–3613.Google Scholar
  23. Roden, J. S., Lin, G. G., and Ehleringer, J. R.: 2000, 'A Mechanistic Model for Interpretation of Hydrogen and Oxygen Isotope Ratios in Tree-Ring Cellulose', Geochimica Et Cosmochimica Acta 64, 21–35.Google Scholar
  24. Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: 1993, 'Isotopic Patterns in Modern Global Precipitation', in Swart P. K. (ed.), Climate Change in Continental Isotopic Records, Geophys. Monogr. Ser., AGU, Washington, D.C., 78, 1–37.Google Scholar
  25. Saurer, M., Borella, S., and Leuenberger, M.: 1997, '?18O of Tree Rings of Beech (Fagus silvatica) as a Record of ?18O of the Growing Season Precipitation', Tellus 49B, 80–92.Google Scholar
  26. Saurer, M., Cherubini, P., and Siegwolf, R.: 2000, 'Oxygen Isotopes in Tree-Rings of Abies Alba: The Climatic Significance of Interdecadal Variations', J. Geophys. Res. 105–10, 12461–12470.Google Scholar
  27. Saurer M., Robertson I., Siegwolf R., and Leuenberger, M.: 1998, 'Oxygen Isotope Analysis of Cellulose: An Inter-Laboratory Comparison', Analytical Chemistry 70, 2074–2080.Google Scholar
  28. Siegenthaler U. and Matter H. A.: 1983, 'Dependence of ?18O and ?D in Precipitation on Climate', in Paleoclimates and Paleowaters: A Collection of Environmental Isotope Studies, IAEA, Vienna, pp. 37–51.Google Scholar
  29. Siegenthaler U. and Oeschger, H.: 1980, 'Correlation of 18O in Precipitation with Temperature and Altitude', Nature 285, 314–317.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Martine Rebetez
    • 1
  • Matthias Saurer
    • 2
  • Paolo Cherubini
    • 3
  1. 1.Long-Term Forest Ecosystem (LWF), WSLWSL Swiss Federal Research InstituteLausanneSwitzerland
  2. 2.PSI Swiss Federal Research InstituteVilligenSwitzerland
  3. 3.WSL Swiss Federal Research InstituteBirmensdorfSwitzerland

Personalised recommendations