International Journal of Primatology

, Volume 18, Issue 4, pp 597–627 | Cite as

Intergeneric Hybrid Baboons

  • Clifford J. Jolly
  • Tamsin Woolley-Barker
  • Shimelis Beyene
  • Todd R. Disotell
  • Jane E. Phillips-Conroy


Though belonging to genera that have been distinct for several million years, gelada and common baboons—Theropithecus gelada and Papio hamadryas sensu lato, respectively—interbreed occasionally, even in the wild. A female hamadryas at Bihere Tsige Park, Addis Ababa, Ethiopia, apparently favored a gelada male over eligible conspecifics and produced several offspring with him. The F1hybrids were large but developmentally normal. In skull and tooth form, and to a lesser extent in postcranial proportions, they were intermediate between the parental forms but lacked most of their parents' derived, (sub)species-specific epigamic characters. A female infant born to a subadult F1was sired by a hamadryas. The backcross infant appeared normal and was still flourishing at about 2.5 years. Though perhaps impeded by natural selection against poorly adapted hybrids, theoretically interspecific hybridization could exceed mutation as a source of novel, preadapted genes in the wild.

Theropithecus gelada Papio hamadryas baboons hybridization microsatellites introgression speciation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiello, L. C. (1981). The allometry of primate body proportions. Symp. Zool. Soc. Lond. 48: 331–358.Google Scholar
  2. Altmann, S.A. (1970). The pregnancy sign in savannah baboons. Lab. Anim. Dig. 6: 6–10.Google Scholar
  3. Alvarez, F. (1973). Periodic changes in the bare skin areas of Theropithecus gelada. Primates 14: 195–199.Google Scholar
  4. Arntzen, J. W., and Wallis, G. P. (1991). Restricted gene-flow in a moving hybrid zone of the newts Triturus cristatus and T. marmoratus in western France. Evolution 45: 805–826.Google Scholar
  5. Avise, J. C. (1994). Molecular Markers, Natural History and Evolution, Chapman and Hall, London.Google Scholar
  6. Avise, J. C., and Saunders, N. C. (1984). Hybridization and introgression among species of sunfish (Lepomis): Analysis by mitochondrial DNA and allozyme markers. Genetics 108: 237–255.Google Scholar
  7. Barton, N. H., and Hewitt, G. M. (1985). Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16: 113–148.Google Scholar
  8. Barton, N. H., and Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones. Nature 341: 497–503.Google Scholar
  9. Bernstein, I. S. (1966). Naturally occurring primate hybrid. Science 154: 1559–1560.Google Scholar
  10. Callen, D. F., Thompson, A. D., Shen, Y., Phillips, H., Richards, H. I., Mulley, J. C., and Sutherland, G. R. (1993). Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet. 52: 922–927.Google Scholar
  11. Carr, S. M., Ballinger, S. W., Deer, J. N., Blankenship, L. H., and Bickham, J. W. (1986). Mitochondrial DNA analysis of hybridization between sympatric white-tailed and mule deer in West Texas. Proc. Natl. Acad. Sci. 83: 9576–9580.Google Scholar
  12. Carson, H. L. (1971). Speciation and the founder principle. Stadler Genet. Symp. 3: 51–70.Google Scholar
  13. Cronin, J. E., and Meikle, W. E. (1979). The phylogenetic position of Theropithecus; Congruence among molecular, morphological and paleontological evidence. Syst. Zool. 28: 259–269.Google Scholar
  14. Crook, J. H., and Aldrich-Blake, P. (1968). Ecological and behavioural contrasts between sympatric ground dwelling primates in Ethiopia. Folia Primatol. 8: 192–227.Google Scholar
  15. Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex, Murray, London.Google Scholar
  16. Delson, E. (1975). Evolutionary history of the Cercopithecidae. In Szalay, F. S. (ed.), Approaches to Primate Paleobiology. Contrib. Primatol. 5: 167–217.Google Scholar
  17. Delson, E. (1993). The fossils from Africa and India and the taxonomy of the genus, In Jablonski, N. G. (ed.), Theropithecus: Rise and Fall of a Primate Genus. Cambridge University Press, Cambridge, pp. 157–190.Google Scholar
  18. Disotell, T. R. (1994). Generic level relationships of the Papionini (Cercopithecoidea). Am. J. Phys. Anthropol. 94: 47–57.Google Scholar
  19. Dixon, A. F. (1983). Observations on the evolution and behavioral significance of “sexual skin” in female primates. Adv. Study Behav. 13: 63–106.Google Scholar
  20. Dobzhansky, T. (1952). Nature and origin of heterosis. In Gowen, J. W. (ed.), Heterosis, Ames, IA, pp. 218–223.Google Scholar
  21. Dobzhansky, T. (1970). Genetics of the Evolutionary Process, Colombia University Press, New YorkGoogle Scholar
  22. Dunbar, R. I. M. (1984). Reproductive Decisions, Princeton University Press, Princeton, NJ.Google Scholar
  23. Dunbar, R. I. M., and Dunbar, P. (1974a). On hybridization between Theropithecus gelada and Papio anubis in the wild. J. Hum. Evol. 3: 187–192.Google Scholar
  24. Dunbar, R. I. M., and Dunbar, P. (1974b). Ecological relations and niche separation between sympatric terrestrial primates in Ethiopia. Folia Primatol. 21: 36–60.Google Scholar
  25. Falconer, D. S. (1960). Introduction to Quantitative Genetics, MacLehose, Glasgow.Google Scholar
  26. Freedman, L. (1957). The fossil Cercopithecoidea of South Africa. Ann. Transvaal Mus. 23: 121–257.Google Scholar
  27. Garrod, A. H. (1879). Notes on the anatomy of Gelada rueppelli. Proc. Zool. Soc. London, 451–457.Google Scholar
  28. Groves, C. P. (1978). Phylogenetic and population systematics of the mangabeys (Primates: Cercopithecoidea). Primates 19: 1.Google Scholar
  29. Haldane, J. B. S. (1922). Sex ratio and unisexual sterility of hybrid animals. J. Genet. 12: 101–109.Google Scholar
  30. Harrison, R. G. (1990). Hybrid zones: Windows on evolutionary process. Oxford Surv. Evol. Biol. 7: 69–128.Google Scholar
  31. Hewitt, G. M. (1989a). Divergence and speciation as viewed from an insect hybrid zone. Can. J. Zool. 68: 1701–1715.Google Scholar
  32. Hewitt, G. M. (1989b). The subdivision of species by hybrid zones. In Otte, D., and Endler, J. A. (eds.), Speciation and Its Consequences, Sinauer Associates, Sunderland MA, pp. 85–110.Google Scholar
  33. Hill, W. C. O. (1970). The Primates. VIII: Cynopithecinae, Edinburgh University Press, Edinburgh.Google Scholar
  34. Iwamoto, T. (1993). The ecology of Theropithecus gelada. In Jablonski, N. G. (ed.), Theropithecus: Rise and Fall of a Primate Genus, Cambridge University Press, Cambridge, pp. 441–452.Google Scholar
  35. Jablonski, N. G. (1993). Introduction. In Jablonski, N. G. (ed.), Theropithecus: Rise and Fall of a Primate Genus, Cambridge University Press, Cambridge, pp. 3–14.Google Scholar
  36. Jolly, C. J. (1963). A suggested case of sexual selection in primates. Man 222: 177–178.Google Scholar
  37. Jolly, C. J. (1970). The large African monkeys as an adaptive array. In Napier, J. R., and Napier, P. H. (eds.), The Old World Monkeys, Academic Press, New York, pp. 139–174.Google Scholar
  38. Jolly, C. J. (1972). The classification and natural history of Theropithecus (Simopithecus) (Andrews, 1916), Baboons of the African Plio-Pleistocene. Bull. Br. Mus. Nat. Hist. (Geol.) 22: 1–123.Google Scholar
  39. Jolly, C. J. (1993). Species, subspecies and baboon systematics. In Kimbel W., and Martin, L., (eds.), Species, Species Concepts and Primate Evolution, Wiley, New York.Google Scholar
  40. Kummer, H. (1968). Social Organization of Hamadryas Baboons, Karger, Basel.Google Scholar
  41. Lehman, N., Eisenhawer, A., Hansen, K., Mech, L. D., Peterson, R. O., Gogan, P. J. P., and Wayne, R. K. (1991). Introgression of coyote mitochondrial DNA into sympatric North American gray wolf populations. Evolution 45(1): 104–119.Google Scholar
  42. Markarjan, D. S., Isakov, E. P., Kondakov, G. I., and Tyukavkina, L. S. (1972). A genetic study of double and triple intergeneric hybrids in catarrhine monkeys. Tsitol. Genet. 6: 217–221 [in Russian].Google Scholar
  43. Markarjan, D. S., Isakov, E. P., and Kondakov, G. I. (1974). Intergeneric hybrids of the lower (48-chromosomal) monkey species of the Sukhumi monkey colony. J. Hum. Evol. 3: 247–255.Google Scholar
  44. Matthews, L. H. (1956). The sexual skin of the gelada baboon (Theropithecus gelada). Trans. Zool. Soc. London 28: 543–552.Google Scholar
  45. McCann, C. (1995). Social Factors Affecting Reproductive Success in Female Gelada Baboons (Theropithecus gelada), Ph.D. dissertation, City University of New York, New York.Google Scholar
  46. McDade, L. (1990). Hybrids and phylogenetic systematics. I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44: 1685–1700.Google Scholar
  47. Mori, A., and Belay, G. (1990). The distribution of baboon species and a new population of gelada baboons along the Wabi-Shebeli river, Ethiopia. Primates 31: 495–508.Google Scholar
  48. Morin, P. A. (1992). Population Genetics of Chimpanzees, Ph.D. dissertation. University of California, San Diego.Google Scholar
  49. Nagel, U. (1973). A comparison of anubis ababoons, hamadryas baboons, and their hybrids at a species border in Ethiopia. Folia Primatol. 19: 104–165.Google Scholar
  50. Nystrom, P. D. (1992). Mating Success of Male Baboons, Ph.D. dissertation, Washington University, St. Louis, MO.Google Scholar
  51. Packer, C. (1979). Inter-troop transfer and inbreeding avoidance in Papio anubis. Anim. Behav. 27: 37–45.Google Scholar
  52. Parham, P. (1996). Plenary address, American Society of Primatologists, Madison, WI.Google Scholar
  53. Paterson, H. E. H. (1985). The recognition concept of species. In Vrba, E. S. (ed.), Species and Speciation, Transvaal Museum Monograph 4, pp. 21–29.Google Scholar
  54. Pemberton, J. M., Slate, J., Bancroft, D. R., and Barrett, J. A. (1995). Nonamplifying alleles at microsatellite loci: A caution for parentage and population studies. Mol. Ecol. 4: 249–252.Google Scholar
  55. Phillips-Conroy, J. E. (1978). Dental Variability in Ethiopian Baboons: An Examination of the Anubis-Hamadryas Hybrid Zone in the Awash National Park, Ethiopia, Ph.D. dissertation, New York University, New York.Google Scholar
  56. Phillips-Conroy, J. E., and Jolly, C. J. (1981). Sexual dimorphism in two subspecies of Ethiopian baboons (Papio hamadryas) and their hybrids. Am. J. Phys. Anthropol. 86: 353–368.Google Scholar
  57. Phillips-Conroy, J. E., and Jolly, C. J. (1986). Changes in the structure of the baboon hybrid zone in the Awash National Park, Ethiopia. Am. J. Phys. Anthropol. 71: 337–350.Google Scholar
  58. Phillips-Conroy, J. E., and Jolly, C. J. (1988). Scheduling of dental eruption in wild and captive baboons. Am. J. Primatol. 15: 1–13.Google Scholar
  59. Phillips-Conroy, J. E., Jolly, C. J., and Brett, F. L. (1991). Characteristics of hamadryas-like male baboons living in anubis baboon troops in the Awash hybrid zone, Ethiopia. Am. J. Phys. Anthropol. 86: 353–368.Google Scholar
  60. Phillips-Conroy, J. E., Jolly, C. J., and Nystrom, P. D. (1986). Palmar dermatoglyphics as a means of identifying individuals in a baboon population. Int. J. Primatol. 7: 435–447.Google Scholar
  61. Phillips-Conroy, J.E., Jolly, C. J., Nystrom, P. D., and Hemmalin, H. (1992). Migration of male hamadryas baboons into anubis groups in the awash baboon hybrid zone. Int. J. Primatol. 13: 455–476.Google Scholar
  62. Plavcan, J. M. (1990), Sexual Dimorphism in the Dentition of Extant Anthropoid Primates., Ph.D. dissertation, Duke University, Durham, NC.Google Scholar
  63. Pocock, R. I. (1925). The external characters of the catarrhine monkeys and apes. Proc. Zool. Soc. London II: 1479–1679.Google Scholar
  64. Powell, J. R. (1978). The founder-flush speciation theory: An experimental approach. Evolution 32: 465–474.Google Scholar
  65. Roy, M. S., Geffen, E., Smith, D., Ostrander, E. A., and Wayne, R. K. (1994). Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol. Biol. Evol. 11(4): 553–570.Google Scholar
  66. Sarich, V. M., and Cronin, J. (1976). Molecular systematics in the primates, In Goodman, M., and Tashian, R. E. (eds.), Molecular Anthropology, Plenum, New York.Google Scholar
  67. Struhsaker, T. T., Butynski, T. M., and Lwanga, J. S. (1988). Hybridization between redtail (Cercopithecus ascanius schmidti) and blue (C. mitis stuhlmanni) monkeys in the Kibale Forest, Uganda. In Gautier-Hion, A., Bourlière, F., and Gautier, J. P. (eds.), A Primate Radiation: Evolutionary Biology of the African Guenons, Cambridge University Press, Cambridge.Google Scholar
  68. Szalay, F. S., and Delson, E. (1979). Evolutionary History of the Primates, Academic Press, New York.Google Scholar
  69. Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man 1871–1971, Aldine, Chicago, pp. 136–179.Google Scholar
  70. Wickler, W. (1963). Die biologische Bedeutung auffallend farbiger, nackter Hautstellen und innerartliche Mimikry der Primaten. Naturwissenschaften 50: 481–482.Google Scholar
  71. Woodruff, D. S. (1993). Non-invasive genotyping of primates. Primates 34: 333–346Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Clifford J. Jolly
    • 1
  • Tamsin Woolley-Barker
    • 1
  • Shimelis Beyene
    • 2
    • 3
  • Todd R. Disotell
    • 1
  • Jane E. Phillips-Conroy
    • 2
    • 4
  1. 1.Department of AnthropologyNew York UniversityNew York
  2. 2.Department of AnthropologyWashington UniversitySt. Louis
  3. 3.Department of BiologyAddis Ababa UniversityAddis AbabaEthiopia
  4. 4.Department of Anatomy and NeurobiologyWashington University Medical SchoolSt. Louis

Personalised recommendations