Journal of Protein Chemistry

, Volume 16, Issue 4, pp 237–255 | Cite as

Computational Sequence Analysis of the Tissue Inhibitor of Metalloproteinase Family

  • Damon A. Douglas
  • Y. Eric Shi
  • Qingxiang Amy Sang


The tissue inhibitor of metalloproteinase (TIMP) family regulates extracellular matrix turnover and tissue remodeling by forming tight-binding inhibitory complexes with matrix metalloproteinases (MMPs). MMPs and TIMPs have been implicated in many normal and pathological processes, such as morphogenesis, development, angiogenesis, and cancer metastasis. This minireview provides information that would aid in classification of the TIMP family and in understanding the similarities and differences among TIMP members according to the physical data, primary structure, and homology values. Calculations of molecular weight, isoelectric point values, and molar extinction coefficients are reported. This study also compares sequence similarities and differences among the TIMP members through calculations of homology within their individual loop regions and the mature region of the molecule. Lastly, this report examines structure–function relationships of TIMPs. Thorough knowledge of TIMP primary and tertiary structure would facilitate the uncovering of the molecular mechanisms underlying metalloproteinase, inhibitory activities and biological functions of TIMPs.

Primary sequence analysis multiple-sequence alignment physical data calculations multi-gap homology calculations structure–function relationship 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apte, S. S., Mattie, M.-G., and Olsen, B. R. (1994). Cloning of the cDNA encoding human tissue inhibitor of metalloproteinase-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22, Genomics 19, 86–90.PubMedGoogle Scholar
  2. Apte, S. S., Olsen, B. R., and Murphy, G. (1995). The gene structure of tissue inhibitor of metalloproteinases (TIMP-3) and its inhibitory activities define the distinct TIMP gene family, J. Biol. Chem. 270, 14313–14318.PubMedGoogle Scholar
  3. Baragi, V. M., Fliszar, C. J., Conroy, M. C., Ye, Q.-Z., Shipley, J. M., and Welgus, H. G. (1994). Contribution of the C-terminal domain of metalloproteinases to binding by tissue inhibitor of metalloproteinases, J. Biol. Chem. 269, 12692–12697.PubMedGoogle Scholar
  4. Bigg, H. F., Clark, I. M., and Cawston, T. E. (1994). Fragments of human fibroblast collagenase: Interaction with metalloproteinase inhibitors and substrates, Biochim. Biophys. Acta 1208, 157–165.PubMedGoogle Scholar
  5. Birkedal-Hansen, H., Moore, W. G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J. A. (1993). Matrix metalloproteinases: A review, Crit. Rev. Oral Biol. Med. 4, 197–250.PubMedGoogle Scholar
  6. Bodden, M. K., Harber, G. J., Birkedal-Hansen, B., Windsor, L. J., Caterina, N. C. M., Engler, J. A., and Birkedal-Hansen, H. (1994a). Functional-domains of human TIMP-1 (tissue inhibitor of metalloproteinases), J. Biol. Chem. 269, 18943–18952.PubMedGoogle Scholar
  7. Bodden, M. K., Windsor, L. J., Caterina, N. C. M., Yermovsky, A., Birkedal-Hansen, B., Galazka, G., Engler, J. A., and Birkedal-Hansen, H. (1994b). Analysis of the TIMP-1/FIB-CL complex, Ann. N. Y. Acad. Sci. 732, 84–95.PubMedGoogle Scholar
  8. Boone, T. C., Johnson, M. J., DeClerck, Y. A., and Langley, K. E. (1990). cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases, Proc. Natl. Acad. Sci. USA 87, 2800–2804.PubMedGoogle Scholar
  9. Boujrad, N., Ogwuegbu, S. O., Garnier, M., Lee, C. H., Martin, B. M., and Papadopoulos, V. (1995). Identification of a stimulator of steroid hormone synthesis isolated from testis, Science 268, 1609–1612.PubMedGoogle Scholar
  10. Carmichael, D. F., Sommer, A., Thompson, R. C., Anderson, D. C., Smith, C. G., Welgus, H. G., and Stricklin, G. P. (1986). Primary structure and cDNA cloning of human fibroblast collagenase inhibitor, Proc. Natl. Acad. Sci. USA 83, 2407–2411.PubMedGoogle Scholar
  11. Cawston, T. E., Murphy, G., Mercer, E., Galloway. W. A., Hazleman, B. L., and Reynolds, J. J. (1983). The interaction of purified rabbit bone collagenase with purified rabbit bone metalloproteinase inhibitor, Biochem. J. 211, 313–318.PubMedGoogle Scholar
  12. Chesler, L., Golde, D. W., Bersch, N., and Johnson, M. D. (1995). Metalloproteinase inhibition and erythroid potentiation are independent activities of tissue inhibitor of metalloproteinases-1, Blood 86, 4506–4515.PubMedGoogle Scholar
  13. Cook, T. F., Burke, J. S., Bergman, K. D., Quinn, C. O., Jeffrey, J. J., and Partridge, N. C. (1994). Cloning and regulation of the rat tissue inhibitor of metalloproteinase-2 in osteoblastic cells, Arch. Biochem. Biophys. 311, 313–320.PubMedGoogle Scholar
  14. Cottam, D. W., and Ress, R. C. (1993). Regulation of matrix metalloproteinases: Their role in tumor invasion and metastasis (review), Int. J. Oncol. 2, 861–872.Google Scholar
  15. Coulombe, B., and Skup, D. (1988). In vitro synthesis of the active tissue inhibitor of metalloproteinases encoded by a complementary DNA from virus-infected murine fibroblasts, J. Biol. Chem. 263, 1439–1443.PubMedGoogle Scholar
  16. Crabbe, T., Kelly, S. M., and Price, N. C. (1996). Analysis of the conformational changes that accompany the activation and inhibition of gelatinase A, FEBS Lett. 380, 53–57.PubMedGoogle Scholar
  17. DeClerck, Y. A., Yean, T.-D., Lu, H. S., Ting, J., and Langley, K. E. (1991). Inhibition of autoproteolytic activation of interstitial procollagenase by recombinant metalloproteinase inhibitor MI/TIMP-2, J. Biol. Chem. 266, 3893–3899.PubMedGoogle Scholar
  18. Denhardt, D. T., Feng, B., Edwards, D. R., Cocuzzi, E. T., and Malyankar, U. M. (1993). Tissue inhibitor of metalloproteinases (TIMP, aka EPA): Structure, control of expression and biological functions, Pharmac. Ther. 59, 329–341.Google Scholar
  19. Devereux, J., Haeberli, O., and Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12, 387–395.PubMedGoogle Scholar
  20. Docherty, A. J. P., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J. R., Murphy, G., and Reynolds, J. J. (1985). Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity, Nature 318, 66–69.PubMedGoogle Scholar
  21. Edwards, D. R., Waterhouse, P., Holman, M. L., and Denhardt, D. T. (1986). A growth-responsive gene (16C8) in normal mouse fibroblasts homologous to a human collagenase inhibitor with erythroid-potentiating activity: Evidence for inducible and constitutive transcripts, Nucleic Acids Res. 14, 8863–8878.PubMedGoogle Scholar
  22. Feng, D.-F., and Doolittle, R. F. (1987). Progressive sequence alignment as a prerequisite to correct phylogenetic trees, J. Mol. Evol. 25, 351–360.PubMedGoogle Scholar
  23. Forough, R., Nikkari, S. T., Hasenstab, D., Lea, H., and Clowes, A. W. (1995). Cloning and characterization of a cDNA encoding the baboon tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), Gene 163, 267–271.PubMedGoogle Scholar
  24. Freudenstein, J., Wagner, S., Luck, R. M., Einspanier, R., and Scheit, K. H. (1990). mRNA of bovine tissue inhibitor of metalloproteinase: Sequence and expression in bovine ovarian tissue, Biochem. Biophys. Res. Commun. 171, 250–256.PubMedGoogle Scholar
  25. Fujimoto, N., Ward, R. V., Shinya, T., Iwata, K., Yamashita, K., and Hayakawa, T. (1996). Interaction between tissue inhibitor of metalloproteinase-2 and progelatinase A: Immunoreactivity analyses, Biochem. J. 313, 827–833.PubMedGoogle Scholar
  26. Gill, S. C., and von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data, Anal. Biochem. 182, 319–326.PubMedGoogle Scholar
  27. Goldberg, G. I., Marmer, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S., and He, C. (1989). Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2, Proc. Natl. Acad. Sci. USA 86, 8207–8211.PubMedGoogle Scholar
  28. Greene, J., Wang, M., Raymond, L. A., Liu, Y. E., and Shi, Y. E. (1996). Molecular cloning and characterization of human tissue inhibitor of metalloproteinase-4 (TIMP-4), J. Biol. Chem. 271, 30375–30380.PubMedGoogle Scholar
  29. Gunja-Smith, Z., Morales, A. R., Romanelli, R., and Woessner, Jr., J. F. (1996). Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy—Role of metalloproteinases and pyridinole cross-links, Am. J. Pathol. 148, 1639–1648.PubMedGoogle Scholar
  30. Hayakawa, T. (1994). Tissue inhibitors of metalloproteinases and their cell growth-promoting activity, mini review, Cell Struct. Funct. 19, 109–114.PubMedGoogle Scholar
  31. Higgins, D. G., and Sharp, P. M. (1989). Fast and sensitive multiple sequence alignments on a microcomputer, BABIOS 5, 151–153.Google Scholar
  32. Horowitz, S., Dafni, N., Shapiro, D. L., Holm, B. A., Notter, R. H., and Quible, D. J. (1989). Hyperoxic exposure alters gene expression in the lung. Induction of the tissue inhibitor of metalloproteinases mRNA and other mRNAs, J. Biol. Chem. 264, 7092–7095.PubMedGoogle Scholar
  33. Howard, E. W., and Banda, M. J. (1991). Binding of tissue inhibitor of metalloproteinase 2 to two distinct sites on human 72-kDa gelatinase. Identification of a stabilization site, J. Biol. Chem. 266, 17972–17977.PubMedGoogle Scholar
  34. Howard, E. W., Bullen, E. C., and Banda, M. J. (1991). Preferential inhibition of 72-and 92-kDa gelatinases by tissue inhibitor of metalloproteinase-2, J. Biol. Chem. 266, 13070–13075.PubMedGoogle Scholar
  35. Huang, W., Suzuki, K., Nagase, H., Arumugam, S., Van Doren, S. R., and Brew, K. (1996). Folding and characterization of the amino-terminal domain of human tissue inhibitor of metalloproteinase-1 (TIMP-1) expressed at high yield in E. coli, FEBS Lett. 384, 155–161.PubMedGoogle Scholar
  36. Imren, S., Kohn, D. B., Shimada, H., Blavier, L., and DeClerck, Y. A. (1996). Overexpression of tissue inhibitor of metalloproteinases-2 by retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion, Cancer Res. 56, 2891–2895.PubMedGoogle Scholar
  37. Khokha, R., and Denhardt, D. T. (1989) Matrix metalloproteinases and tissue inhibitor of metalloproteinases: A review of their role in tumorigenesis and tissue invasion, Invasion Metastasis 9, 391–405.PubMedGoogle Scholar
  38. Khokha, R., Waterhouse, P., Yagel, S., Lala, P. K., Overall, C. M., Norton, G., and Dernhardt, D. T. (1989). Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells, Science 243, 947–950.PubMedGoogle Scholar
  39. Leco, K. J., Khokha, R., Pavloff, N., Hawkes, S. P., and Edwards, D. R. (1994). Tissue inhibitor of metalloproteinase-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues, J. Biol. Cyem. 269, 9352–9360.Google Scholar
  40. Matrisian, L. M. (1992). The matrix-degrading metalloproteinases, Bioessays 14, 455–463.PubMedGoogle Scholar
  41. Morrison, J. F., and Walsh, C. T. (1988). The behavior and significance of slow-binding enzyme inhibitors, Adv. Enzymol. Relat. Areas Mol. Biol. 61, 201–301.PubMedGoogle Scholar
  42. Murphy, G., and Docherty, A. J. P. (1992). The matrix metalloproteinases and their inhibitors, Am. J. Respir, Cell Mol. Biol. 7, 120–125.Google Scholar
  43. Murphy, G., and Werb, Z. (1985). Tissue inhibitor of metalloproteinases. Identification of precursor forms synthesized by human fibroblasts in culture, Biochim. Biophys. Acta 839, 214–218.PubMedGoogle Scholar
  44. Murphy, G. Koklitis, P., and Carne, A. F. (1989). Dissociation of tissue inhibitor of metalloproteinases (TIMP) from enzyme complexes yields fully active inhibitor, Biochem J. 261, 1031–1034.PubMedGoogle Scholar
  45. Murphy, G., Houbrechts, A., Cockett, M. I., Williamson, R. A., O'Shea, M., and Docherty, A. J. P. (1991). The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity, Biochemistry 30, 8097–8102.PubMedGoogle Scholar
  46. Murphy, G., Allan, J. A., Willenbrock, F., Cockett, M. I., O'Connell, J. and P., and Docherty, A. J. P. (1992a). The role of the C-terminal domain in collagenase and stromelysin specificity, J. Biol. Chem. 267, 9612–9618.PubMedGoogle Scholar
  47. Murphy, G., Willenbrock, F., Ward, R. V., Cockett, M. I., Eaton, D., and Docherty, A. J. P. (1992b). The C-terminal domain of 72 kDa gelatinase A is not required for catalysis but it is essential for membrane activation and modulates interactions with tissue inhibitor of metalloproteinases, Biochem. J. 283, 637–641.PubMedGoogle Scholar
  48. Murphy, G., Willenbrock, F., Crabbe, T., O'Shea, M., Ward, R., Atkinson, S., O'Connell, J., and Docherty, A. J. P. (1994). Regulation of matrix metalloproteinase activity, Ann. N. Y. Acad. Sci. 732, 31–41.PubMedGoogle Scholar
  49. Nagase, H. (1994). Matrix metalloproteinases. A mini-review, Contrib. Nephrol. 107, 85–93.PubMedGoogle Scholar
  50. Nagase, H., Suzuki, K., Itoh, Y., Kan, C.-C., Gehring, M. R., Huang, W., and Brew, K. (1996). Involvement of tissue inhibitors of metalloproteinases (TIMPs) during matrix metalloproteinase activation, Adv. Exp. Med. Biol. 389, 23–31.PubMedGoogle Scholar
  51. Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48, 443–453.PubMedGoogle Scholar
  52. Nguyen, Q., Willenbrock, F., Cockett, M. I., O'Shea, M., Docherty, A. J. P., and Murphy, G. (1994). Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A, Biochemistry 33, 2089–2095.PubMedGoogle Scholar
  53. Nothnick, W. B., and Curry, Jr., T. E. (1996). Divergent effects of interleukin-1β on steroidogenesis and matrix metalloproteinase inhibitor expression and activity in cultured rat granulosa cells, Endocrinology 137, 3784–3790.PubMedGoogle Scholar
  54. O'Connell, J. P., Willenbrock, F., Docherty, A. J. P., Eaton, D., and Murphy, G. (1994). Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B, J. Biol. Chem. 269, 14967–14973.PubMedGoogle Scholar
  55. Okada, A., Garnier, J.-M., Vicaire, S., and Basset, P. (1994). Cloning of the cDNA endocing rat tissue inhibitor of metalloproteinase 1 (TIMP-1), amino acid comparison with other TIMPs, and gene expression in rat tissues, Gene 147, 301–302.PubMedGoogle Scholar
  56. O'Shea, M., Willenbrock, F., Williamson, R. A., Cockett, M. I., Freedman, R. B., Reynolds, J. J., Docherty, A. J. P., and Murphy, G. (1992). Site-directed mutations that alter the inhibitory activity of the tissue inhibitor of metalloproteinase-1: Importance of the N-terminal region between systeine 3 and cysteine 13, Biochemistry 31, 10146–10152.PubMedGoogle Scholar
  57. Pavloff, N., Staskus, P. W., Kishnani, N. S., and Hawkes, S. P. (1992). A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family, J. Biol. Chem. 267, 17321–17326.PubMedGoogle Scholar
  58. Ray, J. M., and Stetler-Stevenson, W. G. (1994). The role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis and angiogenesis, Review, Eur. Respir. J. 7, 2062–2072.PubMedGoogle Scholar
  59. Rechid, R., Vingron, M., and Argos, P. (1989). A new interactive protein sequence alignment program and comparison of its results with widely used algorithms, CABIOS 5, 107–113.PubMedGoogle Scholar
  60. Sang, Q. A., and Douglas, D. A. (1996). Computational sequence analysis of matrix metalloproteinases, J. Protein Chem. 15, 137–160.PubMedGoogle Scholar
  61. Sato, H., and Seiki, M. (1996). Membrane-type metalloproteinases (MT-MMPs) in tumor metastasis, J. Biochem. 119, 209–215.PubMedGoogle Scholar
  62. Shimizu, S., Malik, K., Sejima, H., Kishi, J.-I., Hayakawa, T., and Koiwai, O. (1992). Cloning and sequencing of the cDNA encoding a mouse tissue inhibitor of metalloproteinase-2, Gene 114, 291–292.PubMedGoogle Scholar
  63. Smith, G. W., Goetz, T. L., Anthony, R. V., and Smith, M. F. (1994). Molecular cloning of an ovine ovarian tissue inhibitor of metalloproteinase: Ontogeny of mRNA expression and in situ localization within preovulatory follicles and luteal tissue, Endocrinology 134, 344–352.PubMedGoogle Scholar
  64. Smith, T. F., and Waterman, M. S. (1981). Comparison of biosequences, Adv. Appl. Math. 2, 482–489.Google Scholar
  65. Sneath, P. H. A., and Sokal, R. R. (1973). Numerical Taxonomy, Freeman, San Francisco.Google Scholar
  66. Stetler-Stevenson, W. G., Krutzsch, H. C., and Liotta, L. A. (1989). Tissue inhibitor of metalloproteinase-2 (TIMP-2). A new member of the metalloproteinase inhibitor family, J. Biol. Chem. 264, 17374–17378.PubMedGoogle Scholar
  67. Stetler-Stevenson, W. G., Brown, P. D., Onisto, M., Levy, A. T., and Liotta, L. A. (1990). Tissue inhibitor of metalloproteinase-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J. Biol. Chem. 265, 13933–13938.PubMedGoogle Scholar
  68. Stetler-Stevenson, W. G., Bersch, N., and Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity, FEBS Lett 296, 231–234.PubMedGoogle Scholar
  69. Stetler-Stevenson, W. G., Liotta, L. A., and Kleiner, Jr., D. E. (1993). Extracellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis, FASEB J. 7, 1434–1441.PubMedGoogle Scholar
  70. Stricklin, G. P., and Welgus, H. G. (1983). Human skin fibroblast collagenase inhibitor. Purification and biochemical characterization, J. Biol. Chem. 258, 12252–12258.PubMedGoogle Scholar
  71. Strongin, A. Y., Collier, I. E., Krasnov, P. A., Genrich, L. T., Marmer, B. L., and Goldberg, G. I. (1993). Human 92 kDa type IV collagenase: Functional analysis of fibronectin and carboxyl-end domains, Kidney Int. 43, 158–162.PubMedGoogle Scholar
  72. Tanaka, T., Andoh, N., Takeya, T., and Sato, E. (1992). Differential screening of ovarian cDNA libraries detected the expression of the porcine collagenase inhibitor gene in functional corpora lutea, Mol. Cell. Endocrinol. 83, 65–71.PubMedGoogle Scholar
  73. Taylor, K. B., Windsor, L. J., Caterina, N. C. M., Bodden, M. K., and Engler, J. A. (1996). The mechanism of inhibition of collagenase by TIMP-1, J. Biol. Chem. 271, 23938–23945.PubMedGoogle Scholar
  74. Teahan, J. A., and Stein, R. L. (1990). An accurate new assay for stromelysin and its use in measuring the kinetics of inhibition by the tissue inhibitor of metalloproteinases, FASEB J. 4, A 1977 (Abstr 1652).Google Scholar
  75. Thorgeirsson, U. P., Yoshiji, H., Sinha, C. C., and Gomez, D. E. (1996). Breast cancer; Tumor neovasculature and the effect of tissue inhibitor metalloproteinases-1 (TIMP-1) on angiogenesis, In Vivo 10, 137–144.PubMedGoogle Scholar
  76. Tolley, S. P., Davies, G. J., O'Shea, M., Cockett, M. I., Docherty, A. J. P., and Murphy, G. (1993). Crystallization and preliminary X-ray analysis of nonglycosylated tissue inhibitor of metalloproteinases-1, N30QN78Q TIMP-1, Proteins 17, 435–437.PubMedGoogle Scholar
  77. Uria, J. A., Ferrando, A. A., Velasco, G., Freije, J. M. P., and Lopez-Otin, C. (1994). Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family, Cancer Res. 54, 2091–2094.PubMedGoogle Scholar
  78. Wang, M., Liu, Y. E., Greene, J., Sheng, S., Fuchs, A., and Shi, Y. E. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4, Submitted.Google Scholar
  79. Weber, B. H. F., Vogt, G., Pruett, R. C., Stohr, H., and Felbor, U. (1994). Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy, Nat. Genet. 8, 352–356.PubMedGoogle Scholar
  80. Welgus, H. G., Jeffrey, J. J., Eisen, A. Z., Roswit, W. T., and Stricklin, G. P. (1985). Human skin fibroblast collagenase: Interaction with substrate and inhibitor, Collagen Rel. Res. 5, 167–179.Google Scholar
  81. Wilhelm, S. M., Collier, I. E., Marmer, B. L., Eisen, A. Z., Grant, G. A., and Goldberg, G. I. (1989). SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages, J. Biol. Chem. 264, 17213–17221.PubMedGoogle Scholar
  82. Willenbrock, F., and Murphy, G. (1994). Structure-function relationships in the tissue inhibitors of metalloproteinases, Am. J. Respir. Crit. Care Med. 150, S165–S170.PubMedGoogle Scholar
  83. Willenbrock, F., Crabbe, T., Slocombe, P. M., Sutton, C. W., Docherty, A. J. P., Cockett, M. I., O'Shea, M., Brocklehurst, K., Phillips, I. R., and Murphy, G. (1993). The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: A kinetic analysis of the inhibition of gelatinase A, Biochemistry 32, 4330–4337.PubMedGoogle Scholar
  84. Williamson, R. A., Marston, F. A. O., Angal, S., Koklitis, P., Panico, M., Morris, H. R., Carne, A. F., Smith, B. J., Harris, T. J. R., and Freedman, R. B. (1990). Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP), Biochem. J. 268, 267–274.PubMedGoogle Scholar
  85. Williamson, R. A., Martorell, G., Carr, M. D., Murphy, G., Docherty, A. J. P., Freedman, R. B., and Feeney, J. (1994). Solution structure of the active domain of tissue inhibitor of metalloproteinase-2. A new member of the OB fold protein family, Biochemistry 33, 11745–11759.PubMedGoogle Scholar
  86. Windsor, L. J., Bodden, M. K., Birkedal-Hansen, B., Engler, J. A., and Birkedal-Hansen, H. (1994). Mutational analysis of residues in and around the active site of human fibroblasttype collagenase, J. Biol. Chem. 269, 26201–26207.PubMedGoogle Scholar
  87. Woessner, Jr., J. F. (1991). Matrix metalloproteinases and their inhibitors in connective tissue remodeling, FASEB. J. 5, 2145–2154.PubMedGoogle Scholar
  88. Wu, I., and Moses, M. A. (1996). Cloning and expression of rat tissue inhibitor of metalloproteinase 3 (TIMP-3), Gene 168, 243–246.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Damon A. Douglas
    • 1
  • Y. Eric Shi
    • 2
  • Qingxiang Amy Sang
    • 1
  1. 1.Departments of Chemistry and Institute of Molecular BiophysicsFlorida State UniversityTallahasseeUSA
  2. 2.Departments of Pediatrics and PathologyLong Island Jewish Medical Center, Albert Einstein College of MedicineNew Hyde ParkUSA

Personalised recommendations