Molecular Breeding

, Volume 12, Issue 3, pp 245–261 | Cite as

Analysis of microsatellites in major crops assessed by computational and experimental approaches

  • Lifeng Gao
  • Jifeng Tang
  • Hongwei Li
  • Jizeng Jia


Over 85Mb publicly available expressed sequence tags (ESTs) from four agronomically important crops were used to search for the types and frequencies of simple sequence repeats (SSRs) with motif length of 1-6bp. The frequency of EST-SSRs was one in 11.81kb in rice, 17.42kb in wheat, 23.80kb in soybean, and 28.32kb in maize, respectively. Trinucleotide repeats were the most abundant SSR types with up to 47 trinucleotide repeat units in 100kb ESTs. Compared with dicots, monocots contained GC-rich tri- and hexa- motifs, especially rice where 23.6 CCG motif occurred in 100kb ESTs. 597 EST-SSR primer pairs were designed for wheat, of which, 478 primer pairs had successful PCR amplifications. The percentage of polymorphism was up to 41.8% among wheat varieties, that could be used to construct a transcriptional map of wheat. Cross-species amplification was detected. Among the 478 functional primers from wheat, 255 EST-SSRs amplified fragments in rice, maize and soybean way, indicating high degree of transferability between species, that facilitate comparative mapping and homologous gene cloning.

Cross-species amplification Development EST-SSR Frequency Molecular Markers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arzimanoglou I.I., Gilbert F. and Barber H.R.K.1998. Microsatellite instability in human solid tumors.Cancer82: 1808–1820.Google Scholar
  2. Bates G. and Lehrach H.1994. Trinucleotide repeat expansions and human genetic disease.BioEssays16: 277–284.Google Scholar
  3. Bennetzen J.L. and Freeling M.1993. Grasses as a single genetic system: Genome composition, colinearity and compatibility.Trends in Genetics9: 259–261.Google Scholar
  4. Buchanan F.C., Adams L.J., Littlejohn R.P., Maddox J.F. and Crawford A.M.1994. Determination of evolutionary relationships among sheep breeds using microsatellites.Genomics22: 397–403.Google Scholar
  5. Cardle L., Ramsay L., Milbourne D., Macaulay M., Marshall D. and Waugh R.2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants.Genetics156: 847–854.Google Scholar
  6. Chen X., Cho Y.G. and McCouch S.R.2002. Microsatellites in Oryza and other plant species.Mol Gen Genomics268: 331–343.Google Scholar
  7. Chin E.C.L., Senior M.L., Shu H. and Smith J.S.C.1996. Maize simple repetitive DNA sequences: abundance and allele variation.Genome39: 866–873.Google Scholar
  8. Fahima T., Röder M.S., Grama A. and Nevo E.1998. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust.Theor. Appl. Genet.96: 187–195.Google Scholar
  9. Fahima T., Röder M.S., Wendehake K., Kirzhner V.M., Nevo E.2002. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel.Theor. Appl. Genet.104: 17–29.Google Scholar
  10. Fatokun C.A., Menacio-Hautea D.I., Danesh D. and Young N.D.1992. Evidence for orthologous seed weight genes in cowpea and mungbean based upon RFLP mapping.Genetics132: 841–846.Google Scholar
  11. Gale M.D. and Devos K.M.1998. Comparative genetics in the grasses.Proc. Natl. Acad. Sci. USA95: 1971–1974.Google Scholar
  12. Goff S.A., Ricke D., Lan T.H., et al.2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica).Sci.296: 92–100.Google Scholar
  13. Gupta P.K., Balyan H.S., Edwards K.J., Isaac P., Korzun V., Röder M.S., Gautier M.F., Joudrier P., Schlatter A.R., Dubcovsky J., De la Pena R.C., Khairallah M., Penner G., Hayden M.J., Sharp P., Keller B., Wang R.C.C., Hardouin J.P., Jack P. and Leroy P.2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat.Theor. Appl. Genet.105: 413–422.Google Scholar
  14. Hancock J.M.1995. The contribution of slippage-like processes to genome evolution.J. Mol. Evol.41: 1038–1047.Google Scholar
  15. Huang X.Q., Börner A.B., Röder M.S. and Ganal M.W.2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers.Theor. Appl. Genet.105: 699–707.Google Scholar
  16. Kantety R.V., La Rota M., Matthews D.E. and Sorrells M.E.2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat.Plant. Mol. Biol.48: 501–510.Google Scholar
  17. Korzun V., Röder M.S., Ganal M.W., Worland A.J. and Law C.N.1998. Genetic analysis of the dwarfing gene Rht8 in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.).Theor. Appl. Genet.96: 1104–1109.Google Scholar
  18. Korzun V., Röder M.S., Worland A.J. and Börner A.B. 1997. Intrachromosomal mapping of the genes fro dwarfing (Rht12) and vernalisation response (Vrn1) in wheat by using RFLP and microsatellite markers.Plant Breeding116: 227–232.Google Scholar
  19. Li C.D., Rossnagel B.G. and Scoles G.J.2000. The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars.Theor. Appl. Genet.101: 1259–1268.Google Scholar
  20. Liu X.M., Smith C.M. and Gill B.S.2002. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6.Theor. Appl. Genet.104: 1042–1048.Google Scholar
  21. Loudet O., Chaillou S., Camilleri C., Bouchez D. and Daniel-Vedele F.2002. Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis.Theor. Appl. Genet.104: 1173–1184.Google Scholar
  22. Ma X.F., Wanous M.K., Houchins K., Rodrguez mila M.A., Goicoechea P.G., Wang Z., Xie M., Gustafson J.P.2001. Molecular linkage mapping in rye (Secale cereale L.).Theor. Appl. Genet.102: 517–523.Google Scholar
  23. Matsuoka Y., Mitchell S.E., Kresovich S., Goodman M. and Doebley J.2002. Microsatellite in Zea-variability, patterns of mutations, and use for evolutionary studies.Theor. Appl. Genet.104: 436–450.Google Scholar
  24. Morgante M., Hanafey M. and Powell W.2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes.Nat. Genet.30: 194–200.Google Scholar
  25. Peng J.H., Fahima T., Röder M.S., Li Y.C., Dahan A., Grama A., Ronin Y.I., Korol A.B. and Nevo E.1999. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B.Theor. Appl. Genet.98: 862–872.Google Scholar
  26. Reddy P.S. and Housman D.E.1997. The complex pathology of trinucleotide repeats.Curr. Opin. Cell. Biol.9: 364–372.Google Scholar
  27. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P. and Ganal M.W.1998. A microsatellite map of wheat.Genetics149: 2007–2023.Google Scholar
  28. Stack S., Campbell L., Henderson K., Eujayl I., Hanafey M., Powell W. and Wolters P.2000. Development of EST-derived microsatellite markers for mapping and germplasm analysis in wheat.Plant & Animal Genome conference, San Diego, California, USA. pp. 102.Google Scholar
  29. Stephenson P., Bryan G., Kirby J., Collins A., Devos K., Busso C. and Gale M.1998. Fifty new microsatellite loci for the wheat genetic map.Theor. Appl. Genet.97: 946–949.Google Scholar
  30. Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S. and McCouch S.2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon association, and genetic marker potential.Genome Res.11: 1441–1452.Google Scholar
  31. Tóth G., Gáspári Z. and Jurka J.2000. Microsatellites in different eukaryotic genomes: Survey and analysis.Genome Res10: 967–981.Google Scholar
  32. Warren S.T. and Nelson D.L.1993. Trinucleotide repeat expansions in neurological disease.Curr. Opin. Neurobiol.3: 757–759.Google Scholar
  33. Wooster R., Cleton-Jansen A.M., Collins N., Mangion J., Cornelis R.S., Cooper C.S., Gusterson B.A., Ponder B.A.J., von Deimling A., Wiestler O.D., et al.1994. Instability of short tandem repeats (microsatellites) in human cancer.Nat. Genet6: 152–156.Google Scholar
  34. Xie C.J., Sun Q.X., Ni Z.F., Yang T.M., Nevo E. and Fahima T.2002. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers.Theor. Appl. Genet.104: 1164–1172.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Lifeng Gao
    • 1
  • Jifeng Tang
    • 1
  • Hongwei Li
    • 1
  • Jizeng Jia
    • 1
  1. 1.Key Laboratory of Crop Germplasm & Biotechnology, MOA, Institute of Crop Germplasm ResourceChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations