Adaptation of the Maternal Intestine During Lactation

  • Kimberly A. Hammond
Article

Abstract

One of the most dramatic adaptations to lactation is a large increase in the size and complexity of maternal intestine. Although there are few data on changes in intestinal size, intestinal enlargement has been observed in many taxonomic groups. In this review I describe the morphological and physiological changes in the intestinal mass of lactating animals and discuss their functional significance. The observed increases maintain the digestive efficiency of the food, as well as insure adequate absorption of nutrients in the face of the increased energy demand that accompanies lactation. The extent of the increase in size is proportional to the increase in energy demand. It is clear that if the intestine did not accommodate during lactation mothers would not have the capacity to absorb the nutrients need to maintain their energy demand.

Mammals small intestine energy expenditure adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. W. Cripps and V. J. Williams (1975). The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine of the albino rat. Brit. J. Nutr. 33:17–32.Google Scholar
  2. 2.
    O. T. Oftedal (1984). Milk Composition, milk yield, and energy output at peak lactation: a comparative review. Symp. Zool. Soc. Lond. 51:33–85.Google Scholar
  3. 3.
    A. M. Prentice and A. Prentice (1988). Energy costs of lactation. Ann. Rev. Nutr. 8:63–79.Google Scholar
  4. 4.
    K. A. Hammond, M. Konarzewski, R. Torres, and J. Diamond (1994). Metabolic ceilings under a combination of peak energy demands. Physiol. Zool. 68:1479–1506.Google Scholar
  5. 5.
    E. Ptyalize, M. Lam, and J. Diamond (1991). Nutrient extraction by cold-exposed mice: a test of digestive safety margin. Am. J. Physiol. 261:608–620.Google Scholar
  6. 6.
    C. F. Peterson, K. A. Nag, and J. M. Diamond (1990). Sustained metabolic scope. Proc. Natl. Acad. Sci. U.S.A. 87:2324–2328.Google Scholar
  7. 7.
    K. A. Hammond and J. M. Diamond (1992). An experimental test for a ceiling on sustained metabolic rate in lactating mice. Physiol. Zool. 65:952–977.Google Scholar
  8. 8.
    B. F. Fell, A. Smith, and R. M. S. Campbell (1963). Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. J. Path. Bact. 85:179–188.Google Scholar
  9. 9.
    R. Boyne, B. F. Fell, and I. Robb (1966). The surface area of the intestinal mucosa in the lactating rat. J. Physiol. 183:570–576.Google Scholar
  10. 10.
    J. R. Speakman and J. McQueenie (1996). Limits to sustained metabolic rate: the link between food intake, basal metabolic rate, and morphology in reproducing mice. Mus musculus. Physiol Zool. 69:746–769.Google Scholar
  11. 11.
    R. Camas, V. J. Romero, and R. L. Baldwin (1982). Maintenance energy requirements during lactation in rats. J. Nutr. 112:1876–1880.Google Scholar
  12. 12.
    R. M. S. Campbell and B. F. Fell (1964). Gastro-intestinal hypertrophy in the lactating rat in relation to its food intake. J. Physiol. 171:90–97.Google Scholar
  13. 13.
    I. L. Craft (1970). The influence of pregnancy and lactation on the morphology and absorptive capacity of the rat small intestine. Clin. Sci. 38:287–295.Google Scholar
  14. 14.
    Z. Gebczynska and M. Gebczynski (1971). Length and weight of the alimentary tract of the root vole. Acta Theriol. 26:359–369.Google Scholar
  15. 15.
    K. Burdett and C. Reek (1979). Adaptation of the small intestine during pregnancy and lactation in the rat. Biochem. J. 184:245–251.Google Scholar
  16. 16.
    P. R. Harmatz, P. Weisz-Carringtion, V. Giovino-Barry, R. A. Hatz, and K. J. Bloch (1993). Intestinal adaptation during lactation in the mouse. II. Altered intestinal processing of a dietary protein. Am. J. Physiol. 264:G1126–G1132.Google Scholar
  17. 17.
    U. K. Datta, A. N. Datta, and S. Mukherjee (1995). Role of hyperphagia in structural changes of small intestine during lactation. Indian J. Physiol. Phermacol. 39:259–262.Google Scholar
  18. 18.
    G. Pelletier, A. B. dePassille, M. Bernier-Cardou, and J. Morisset (1987). Influence of pregnancy, lactation, litter size, and diet energy density on the stomach and intestine of sows. J. Nutr. 117:1759–1766.Google Scholar
  19. 19.
    B. F. Fell, R. M. S. Campbell, and R. Boyne (1964). Observations on the morphology and nitrogen content of the alimentary canal in breeding hill sheep. Res. Vet. Sci. 5:175–185.Google Scholar
  20. 20.
    A. Myrcha (1962). Variations in length and weight of the alimentary tract of Clethrionomys glareolus(Schreber 1780). Acta Theriol. 9:139–148.Google Scholar
  21. 21.
    A. Myrcha (1965). Length and weight of the alimentary tract of Apodemus flavicollis. Acta Theriol. 10:225–228.Google Scholar
  22. 22.
    B. A. Wunder (1992). Morphophysiological indicators of the energy state of small mammals. In T. Tomasi, and T. Horton (eds.), Mammalian Energetics: Interdisciplinary View of Metabolism and Reproduction, Cornell University Press, Ithaca, New York, pp. 83–104Google Scholar
  23. 23.
    A. B. Cairnie and R. E. Bentley (1967). Cell proliferation studies in the intestinal epithelium of the rat. Hyperplasia during lactation. Exper. Cell Res. 46:428–440.Google Scholar
  24. 24.
    R. M. S. Prieto, M. Ferrer, J M Fe, J M Rayo, and J. Tur (1994) Morphological adaptative changes of small intestinal tract regions due to pregnancy and lactation in rats. Ann. Nutr. Metab. 38:295–300.Google Scholar
  25. 25.
    K. A. Hammond and J. Diamond (1994). Limits to dietary nutrient and intestinal nutrients uptakes in lactating mice. Physiol. Zool. 67:282–303.Google Scholar
  26. 26.
    K. A. Hammond, M. Lam, K. C. K. Lloyd, and J. Diamond (1996). Simultaneous manipulation of intestinal capacities and nutrient loads in mice. Am. J. Physiol. 271:G969–G979.Google Scholar
  27. 27.
    S. A. Barnett and E. M. Widdowson (1971). Organ weights and body composition of parturient and lactating mice, and their young at 21°C and −3°C. J. Reprod. Fertil. 26:39–57.Google Scholar
  28. 28.
    E. Elias and R. H. Dowling (1976). The mechanism for smallbowel adaptation in lactating rats. Clin. Sci. Mol. Med. 51:427–433.Google Scholar
  29. 29.
    B. F. Fell (1972). Adaptations of the digestive tract during reproduction in the mammal. World Rev. Nut. Diet. 14:180–256.Google Scholar
  30. 30.
    D. L. Penry and P. A. Jumars (1987). Modeling animal guts as chemical reactors. Am. Natl. 129:69–96.Google Scholar
  31. 31.
    B. A. Rolls (1975). Dipeptidase activity in the small intestinal mucosa during pregnancy and lactation in the rat. Brit. J. Nutr. 33:1–9.Google Scholar
  32. 32.
    W. H. Karasov and J. M. Dammond (1985). Digestive adaptations for fueling the cost of endothermy. Science 228:202–204.Google Scholar
  33. 33.
    K. A. Hammond and B. A. Wunder (1991). The role of quiet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster. Physiol. Zool. 64:541–567.Google Scholar
  34. 34.
    J. Larradale, P. Fernandez-Ortero, and M. Gonzalez (1966). Increased active transport of glucose through the intestine during pregnancy. Nature 209:1356–1357.Google Scholar
  35. 35.
    L. Penzes and G. Simon (1968). Intestinal absorption and turnover of d1-methionine during reproduction in the rat. Japanese J. Physiol. 18:288–296.Google Scholar
  36. 36.
    M. C. Dugas, R. L. Hazelwood, and A. L. Lawrence (1970). Influence of pregnancy and/or exercise on intestinal transport of amino acids in rats. Proc. Soc. Exp. Biol. Med. 135:127–131.Google Scholar
  37. 37.
    X. J. Musacchia and A. M. Hartner (1970). Intestinal absorption of glucose, and blood glucose and hematocrit in pregnant and non-pregnant hamsters. Proc. Soc. Exp. Biol. 135:307–310.Google Scholar
  38. 38.
    B. P. Halloran and H. F. DeLuca (1980). Calcium transport in small intestine during pregnancy and lactation. Am. J. Physiol. 239:E64–E68.Google Scholar
  39. 39.
    R. M. S. Pitkin (1985) Calcium metabolism in pregnancy and the perinatal period: a review. Am. J. Obstet. Gynecol. 151:99–109.Google Scholar
  40. 40.
    J. Metcalfe, M. K. Stock, and D. H. Barron (1988) Maternal physiology during gestation. In E. Knobil, and J. Neill (eds), The Physiology of Reproduction, Raven Press, New York, pp. 2145–2176.Google Scholar
  41. 41.
    P. M. Cotes and B. A. Cross (1954). The influence of suckling on food intake and growth of adult female rats. J. Endocrinol. 10:63–367.Google Scholar
  42. 42.
    L. R. Jacobs, S. R. Bloom, J. M. Polak, and R. H. Dowling (1975). Does enteroglucagon play a trophic role in intestinal adaptation? Clin. Sci. Mol. Med. 50:14–15.Google Scholar
  43. 43.
    J. R. Mainoya (1978). Possible influences of prolaction on intestinal hypertrophy in pregnant and lactating rats. Experien. 34:1230–1231.Google Scholar
  44. 44.
    M. B. Noel and B. Woodside (1993). Effects of systemic and central prolactin injections on food intake, weight gain, and estrous cyclicity in female rats. Physiol. Behav. 54:151–154.Google Scholar
  45. 45.
    E. O'Loughlin, M. Winter, A. Shun, J. A. Hardin, and D. G. Gall (1994). Structural and functional adaptation following jejunal resection in rabbits: effect of epidermal growth factor. Gastroenterology 107:87–93.Google Scholar
  46. 46.
    K. A. Hammond, K. C. K. Lloyd, and J. Diamond (1996). Is mammary output capacity limiting to lactational performance? J. Exp. Biol. 199:337–349.Google Scholar
  47. 47.
    M. Konarzewski and J. Diamond (1994). Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physiol. Zool. 67:1186–1212.Google Scholar
  48. 48.
    T. E. Tomasi and D. A. Mitchell (1996). Temperature and photoperiod effects on thyroid function and metabolism in cotton rats (Sigmodon hispidus). Comp. Biochem. Physiol. 113A:267–274.Google Scholar
  49. 49.
    M. L. Fiorotto, D. G. Burrin, M. Perez, and P. J. Reeds (1991). Intake and use of milk nutrients by rat pups suckled in small, medium, and large litters. Am. J. Physiol. 260:R1104–R1113.Google Scholar
  50. 50.
    R. E. Ricklefs, M. Konarzewski, and S. Daan (1996). The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. Am. Natl. 147:1047–1071.Google Scholar
  51. 51.
    K. J. Motil, T. A. Davis, C. M. Montandon, W. W. Wong, and P. D. Klein (1996). Whole-body protein turnover in the fed state is reduce in response to dietary protein restriction in lactating women. Am. J. Clin. Nutr. 64:32–39.Google Scholar
  52. 52.
    R. L. Vernon and C. M. Pond (1997). Adaptations of maternal adipose tissue to lactation. J. Mam. Gland Biol. Neoplasia 2:231–241.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Kimberly A. Hammond
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaRiverside

Personalised recommendations