Advertisement

International Journal of Primatology

, Volume 18, Issue 2, pp 261–295 | Cite as

Phylogeny and Evolution of Selected Primates as Determined by Sequences of the ε-Globin Locus and 5′ Flanking Regions

  • Calvin A. Porter
  • Scott L. Page
  • John Czelusniak
  • Horacio Schneider
  • Maria Paula C. Schneider
  • Iracilda Sampaio
  • Morris Goodman
Article

Abstract

We studied phylogenetic relationships of 39 primate species using sequences of the ε-globin gene. For 13 species, we also included flanking sequences 5′ of this locus. Parsimony analyses support the association of tarsiers with the anthropoids. Our analysis of New World monkeys supports the model in which the callitrichines form a clade with Aotus, Cebus, and Saimiri, with Cebus and Saimiri being sister taxa. However, analysis of the 5′ flanking sequences did not support grouping the atelines with Callicebus and the pitheciins. Our data support the classification of platyrrhines into three families, Cebidae (consisting of Cebus, Saimiri, Aotus, and the callitrichines; Atelidae—the atelines; and Pitheciidae—Callicebus and the pithiciins. The strepsirhines form well-defined lemuroid and lorisoid clades, with the cheirogaleids (dwarf and mouse lemurs) and Daubentonia (aye-aye) in the lemuroids, and the aye-aye being the most anciently derived. These results support the hypothesis that nonhuman primates of Madagascar descended from a single lineage. Local molecular clock calculations indicate that the divergence of lemuroid and lorisoid lineages, and the earliest diversification of lemuroids, occurred during the Eocene. The divergence of major lorisoid lineages was probably considerably more recent, possibly near the Miocene–Oligocene boundary. Within hominoids some estimated dates differ somewhat from those found with more extensive noncoding sequences in the β-globin cluster.

ceboids strepsirhines primate phylogeny ε-globin gene molecular evolution molecular clock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adkins, R. M., and Honeycutt, R. L. (1994). Evolution of the primate cytochrome c oxidase subunit II gene. J. Mol. Evol. 38: 215–231.Google Scholar
  2. Adkins, R. M., Honeycutt, R. L., and Disotell, T. R. (1996). Evolution of eutherian cytochrome c oxidase subunit II: Heterogeneous rates of protein evolution and altered interaction with cytochrome c. Mol. Biol. Evol. 13: 1393–1404.Google Scholar
  3. Bailey, W. J., Fitch, D. A., Tagle, D. A., Czelusniak, J., Slightom, J. L., and Goodman, M. (1991). Molecular evolution of the ψη-globin gene locus: Gibbon phylogeny and the hominoid slowdown. Mol. Biol. Evol. 8: 155–184.Google Scholar
  4. Bailey, W. J., Slightom, J. L., and Goodman, M. (1992a). Rejection of the “flying primate” hypothesis by phylogenetic evidence from the ε-globin gene. Science 256: 86–89.Google Scholar
  5. Bailey, W. J., Hayasaka, K., Skinner, C. G., Kehoe, S., Sieu, L. C., Slightom, J. L., and Goodman, M. (1992b). Reexamination of the African hominoid trichotomy with additional sequences from the primate β-globin gene cluster. Mol. Phylogenet. Evol. 1: 97–135.Google Scholar
  6. Barroso, C. M. L., Schneider, H., Schneider, M. P. C., Sampaio, I., Harada, M. L., Czelusniak, J., and Goodman, M. (1997). Update on the phylogenetic systematics of New World monkeys: Further DNA evidence for placing the pygmy marmoset (Cebuella) within the marmoset genus Callithrix. Int. J. Primatol. (in press).Google Scholar
  7. Bonner, T. I., Heinemann, R., and Todaro, G. J. (1980). Evolution of DNA sequences has been retarded in Malagasy primates. Nature 286: 420–423.Google Scholar
  8. Bonner, T. I., Heinemann, R., and Todaro, G. J. (1981). A geographical factor involved in the evolution of the single copy DNA sequence of primates. In Scudder, G. G. E., and Reveal, J. L. (eds.), Evolution Today, Hunt Institute for Botanical Documentation, Pittsburgh, PA, pp. 293–300.Google Scholar
  9. Britten, R. J. (1986). Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398.Google Scholar
  10. Cabot, E. L., and Beckenbach, A. T. (1989). Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput. Appl. Biosci. 5: 233–234.Google Scholar
  11. Charles-Dominique P., and Martin R. D. (1970) Evolution of lorises and lemurs. Nature 227: 257–260.Google Scholar
  12. Chiu, C.-h., Schneider, H., Schneider, M. P. C., Sampaio, I., Meireles, C., Slightom, J. L., Gumucio, D. L., and Goodman, M. (1996). Reduction of two functional γ-globin genes to one: An evolutionary trend in New World monkeys (Infraorder Platyrrhini). Proc. Natl. Acad. Sci. USA 93: 6510–6515.Google Scholar
  13. Collins, F. S., and Weissman, S. M. (1984). The molecular genetics of human hemoglobin. Prog. Nucleic Acid Res. Mol. Biol. 31: 315–462.Google Scholar
  14. Dene, H., Goodman, M., and Prychodko, W. (1976a). Immunodiffusion evidence on the phylogeny of the primates. In Goodman M., and Tashian, R. E. (eds.), Molecular Anthropology, Plenum, New York, pp. 171–195.Google Scholar
  15. Dene, H., Goodman, M., Prychodoko, W., and Moore, G. W. (1976b). Immunodiffusion systematics of the primates. III. The Strepsirhini. Folia Primatol. 25: 35–61.Google Scholar
  16. Felsenstein, J. (1989) PHYLIP-Phylogeny inference package (version 3.2). Cladistics 5: 164–166.Google Scholar
  17. Fitch, D. H. A., Bailey, W. J., Tagle, D. A., Goodman, M., Sieu, L., and Slightom, J. L. (1991). Duplication of the γ-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc. Natl. Acad. Sci. USA 88: 7396–7400.Google Scholar
  18. Fleagle, J. G. (1988). Primate Adaptation & Evolution, Academic Press, San Diego, CA.Google Scholar
  19. Ford, S. M. (1986). Systematics of the New World monkeys. In Swindler, D. R., and Erwin, J. (eds.), Comparative Primate Biology, Vol. 1. Systematics, Evolution, and Anatomy, A. R. Liss, New York, pp. 73–135.Google Scholar
  20. Gingerich, P. D. (1973). Anatomy of the temporal bone in the oligocene anthropoid Apidium and the origin of Anthropoidea. Folia Primatol. 19: 329–337.Google Scholar
  21. Gingerich, P. D. (1975). Dentition of Adapis parisiensis and the evolution of lemuriform primates. In Tattersal, I., and Sussman, R. W. (eds.), Lemur Biology, Plenum Press, New York, pp. 65–80.Google Scholar
  22. Gingerich, P. D. (1984). Primate evolution: Evidence from the fossil record, comparative morphology, and molecular biology. Yrbk. Phys. Anthropol. 27: 57–72.Google Scholar
  23. Gingerich, P. D., and Uhen, M. D. (1994). Time of origin of primates. J. Hum. Evol. 27: 443–445.Google Scholar
  24. Goodman, M. (1985). Rates of molecular evolution: The hominoid slowdown. Bioessays 3: 9–14.Google Scholar
  25. Goodman, M., Koop, B. F., Czelusniak, J., Weiss, M. L., and Slightom, J. L. (1984). The η-globin gene: Its long evolutionary history in the β-globin gene family of mammals. J. Mol. Biol. 180: 803–823.Google Scholar
  26. Goodman, M., Tagle, D. A., Fitch, D. H. A., Bailey, W., Czelusniak, J., Koop, B. F., Benson, P., and Slightom, J. L. (1990). Primate evolution at the DNA level and a classification of hominoids. J. Mol. Evol. 30: 260–266.Google Scholar
  27. Goodman, M., Czelusniak, J., Bailey, W. J., Hayasaka, K., Stanhope, M. J., and Slightom, J. L. (1994). Molecular evidence on primate phylogeny from DNA sequences. Am. J. Phys. Anthropol. 94: 3–24.Google Scholar
  28. Groves, C. P. (1974). Taxonomy and phylogeny of prosimians. In Martin, R. D., Doyle, G. A., and Walker, A. C. (eds), Prosimian Biology, Duckworth, London, pp. 435–448.Google Scholar
  29. Groves, C. P. (1989). A Theory of Human and Primate Evolution, Clarendon Press, Oxford.Google Scholar
  30. Groves, C. P. (1993). Order Primates. In Wilson, D. E., and Reeder, D. M. (eds.), Mammal Species of the World: A Taxonomic and Geographic Reference. Smithsonian Institution Press, Washington, DC, pp. 243–277.Google Scholar
  31. Harada, M. L., Schneider, H., Schneider, M. P. C., Sampaio, I., Czelusniak, J., and Goodman, M. (1995). DNA evidence on the phylogenetic systematics of New World monkeys: Support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes. Mol. Phylogenet. Evol. 4: 331–349.Google Scholar
  32. Hardison, R. C. (1983). The nucleotide sequence of the rabbit embryonic globin gene β4. J. Biol. Chem. 258: 8739–8744Google Scholar
  33. Harris, S., Thackeray, J. R., Jeffreys, A. J., and Weiss, M. L. (1986). Nucleotide sequence analysis of the lemur β-globin gene family: Evidence for major rate fluctuations in globin polypeptide evolution. Mol. Biol. Evol. 3: 465–484.Google Scholar
  34. Hayasaka, K., Gojobori, T., and Horai, S. (1988). Molecular phylogeny and evolution of primate mitochondrial DNA. Mol. Biol. Evol. 5: 626–644.Google Scholar
  35. Hayasaka, K., Fitch, D. H. A., Slightom, J. L., and Goodman, M. (1992). Fetal recruitment of anthropoid γ-globin genes: Findings from phylogenetic analyses involving the 5′-flanking sequences of the ψγ1 globin gene of spider monkey Ateles geoffroyi. J. Mol. Biol. 224: 875–881.Google Scholar
  36. Higgins, D. G., Bleasby, A. J., and Fuchs, R. (1992). Clustal V: Improved software for multiple sequence alignment. CABIOS 8: 189–191.Google Scholar
  37. Jaworski, C. J. (1995). A reassessment of mammalian αA-crystallin sequences using DNA sequencing: Implications for anthropoid affinities of tarsier. J. Mol. Evol. 41: 901–908.Google Scholar
  38. Kay, R. F. (1990). The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea). J. Hum. Evol. 19: 175–208.Google Scholar
  39. Koop, B. F., Miyamoto, M. M., Embury, J. E., Goodman, M., Czelusniak, J., and Slightom, J. L. (1986). Nucleotide sequence and evolution of the orangutan globin gene region and surrounding Alu repeats. J. Mol. Evol. 24: 94–102.Google Scholar
  40. Koop, B. F., Tagle, D. A., Goodman, M., and Slightom, J. L. (1989). A molecular view of primate phylogeny and important systematic and evolutionary questions. Mol. Biol. Evol. 6: 580–612.Google Scholar
  41. Martin, R. D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction, Chapman and Hall, London.Google Scholar
  42. Martin, R. D. (1993). Primate origins: Plugging the gaps. Nature 363: 223–234.Google Scholar
  43. Meireles, C. M. M., Schneider, M. P. C., Sampaio, M. I. C., Schneider, H., Slightom, J. L., Chiu, C.-H., Neiswanger, K., Gumucio, D. L., Czelusniak, J., and Goodman, M. (1995). Fate of a redundant γ-globin gene in the atelid clade of New World monkeys: Implications concerning fetal globin gene expression. Proc. Natl. Acad Sci. USA 92: 2607–2611.Google Scholar
  44. Nowak, R. M. (1991). Walker's Mammals of the World, 5th ed., Johns Hopkins University Press, Baltimore.Google Scholar
  45. Nowak, R. M., and Paradiso, J. L. (1983). Walker's Mammals of the World, 4th ed., Johns Hopkins University Press, Baltimore.Google Scholar
  46. Porter, C. A., Sampaio, I., Schneider, H., Schneider, M. P. C., Czelusniak, J., and Goodman, M. (1995). Evidence on primate phytogeny from ε-globin gene sequences and flanking regions. J. Mol. Evol. 40: 30–55.Google Scholar
  47. Rosenberger, A. L. (1984). Fossil New World monkeys dispute the molecular clock. J. Hum. Evol. 13: 737–742.Google Scholar
  48. Sarich, V. M., and Cronin, J. E. (1976). Molecular systematics of the primates. In Goodman, M., and Tashian, R.E. (eds.), Molecular Anthropology. Plenum, New York, pp. 141–170.Google Scholar
  49. Schneider, H., Schneider, M. P. C., Sampaio, I., Harada, M. L., Stanhope, M., Czelusniak, J., and Goodman, M. (1993). Molecular phylogeny of the New World monkeys (Platyrrhini, Primates). Mol. Phylogenet. Evol. 2: 225–242.Google Scholar
  50. Schneider, H., Samapio, I., Harada, M. L., Barroso, C. M. L., Schneider, M. P. C., Czelusniak, J., and Goodman, M. (1996). Molecular phylogeny of the New World monkeys (Platyrrhini, Primates) based on two unlinked nuclear genes: IRBP intron 1 and ε-globin sequences. Am. J. Phys. Anthropol. 100: 153–179.Google Scholar
  51. Schwartz, J. H. (1986). Primate systematics and a classification of the order. In Swindler, D.R., and Erwin, J. (eds.), Comparative Primate Biology, Vol. 1. Systematics, Evolution, and Anatomy, A. R. Liss, New York, pp. 1–41.Google Scholar
  52. Schwartz, J. H., and Tattersall, I. (1985). Evolutionary relationships of living lemurs and lorises (Mammalia, Primates) and their potential affinities with European Eocene Adapidae. Anthropol. Pap. Am. Mus. Nat. Hist. 57: 344–352.Google Scholar
  53. Shapiro, S. G., Schon, E. A., Townes, T. M., and Lingrel, J. B. (1983). Sequence and linkage of the goat εI and εII β-globin genes J. Mol. Biol. 169: 31–52Google Scholar
  54. Shoshani, J., Groves, C. P., Simons, E. L., and Gunnell, G. F. (1996). Primate phylogeny: Morphological vs molecular results. Mol. Phylogenet. Evol. 5: 102–154.Google Scholar
  55. Simons, E. L., Brown, T. M., and Rasmussen, D. T. (1987). Discovery of two additional prosimian primate families (Omomyidae, Lorisidae) in the African Oligocene. J. Hum. Evol. 15: 431–437.Google Scholar
  56. Simpson, G. G. (1945). The principles of classification and a classification of the mammals. Bull. Amer. Mus. Natur. Hist. 85: 1–350.Google Scholar
  57. Slightom, J. L., Siemieniak, D. R., and Sieu, L. C. (1991). DNA sequencing: Strategy and methods to directly sequence large DNA molecules. In Miyamoto, M. M., and Cracraft, J. (eds.), Phylogenetic Analysis of DNA Sequences, Oxford University Press, New York, pp. 18–44.Google Scholar
  58. Swofford, D. L. (1993). PAUP: Phylogenetic Analysis Using Parsimony, Smithsonian Institution Press, Washington, DC.Google Scholar
  59. Szalay, F. S., and Katz, C. C. (1973). Phylogeny of lemurs, galagos and lorises. Folia Primatol. 19: 88–103.Google Scholar
  60. Tagle, D. A., Koop, B. F., Goodman, M., Slightom, J. L., Hess, D. L., and Jones, R. T. (1988). Embryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J. Mol. Biol. 203: 439–455.Google Scholar
  61. Yoder, A. D. (1994). Relative position of the Cheirogaleidae in Strepsirhine phytogeny: A comparison of morphological and molecular methods and results. Am. J. Phys Anthropol. 94: 25–46.Google Scholar
  62. Yoder, A. D., Cartmill, M., Ruvolo, M., Smith, K., and Vilgalys, R. (1996). Ancient single origin for Malagasy primates. Proc. Natl. Acad. Sci. USA 93: 5122–5126.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Calvin A. Porter
    • 1
    • 2
  • Scott L. Page
    • 1
  • John Czelusniak
    • 1
  • Horacio Schneider
    • 3
  • Maria Paula C. Schneider
    • 3
  • Iracilda Sampaio
    • 3
  • Morris Goodman
    • 1
  1. 1.Department of Anatomy and Cell BiologyWayne State University School of MedicineDetroit
  2. 2.Department of Human GeneticsUniversity of Michigan Medical SchoolAnn Arbor
  3. 3.Departmento de Genética, Centro de Ciencias BiologicasUniversidade Federal do ParáBelem, ParáBrazil

Personalised recommendations