Prolactin Mediated Intracellular Signaling in Mammary Epithelial Cells

  • Nancy E. HynesEmail author
  • Nathalie Cella
  • Markus Wartmann


Prolactin binds to a member of the cytokine receptor superfamily. The cytoplasmic domain of the prolactin receptor (PrlR)4 displays no enzymatic activity yet prolactin treatment leads to the induction of protein tyrosine phosphorylation. PrlR is associated with JAK2, a protein tyrosine kinase whose activity is stimulated following receptor dimerization. JAK2 subsequently phosphorylates PrlR and other cellular proteins which are recruited to the activated receptor complex. Among the JAK2 substrates is the transcription factor Stat5 whose phosphorylation mediates the transcriptional activation of β-casein gene expression. In this review we discuss the prolactin induced signaling pathways which mediate differentiation of the mammary gland.

β-casein gene transcription JAK Stat MAP kinase Shc SHP-2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiolog. Rev. 60:1049–1106.Google Scholar
  2. 2.
    J. F. Bazan (1990). Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. U.S.A. 87:6934–6938.Google Scholar
  3. 3.
    M. Schmitt-Ney, W. Doppler, R. K. Ball, and B. Groner (1991). B-casein gene promoter activity is regulated by the hormone mediated relief of transcriptional repression and a mammary gland-specific nuclear factor. Mol. Cell. Biol. 11:3745–3755.Google Scholar
  4. 4.
    C. S. Lee and T. Oka (1992). A pregnancy-specific mammary nuclear factor involved in the repression of the mouse β-casein gene transcription by progesterone. J. Biol. Chem. 267:5797–5801.Google Scholar
  5. 5.
    S. Altiok and B. Groner (1993). Interaction of two sequence-specific single-stranded DNA-binding proteins with an essential region of the β-casein gene promoter is regulated by lactogenic hormones. Mol. Cell. Biol. 13:7303–7310.Google Scholar
  6. 6.
    V. S. Meier and B. Groner (1994). The nuclear factor YY1 participates in repression of the β-casein gene promoter in mammary epithelial cells and is counteracted by the mammary gland factor during lactogenic hormone induction. Mol. Cell. Biol. 14:128–137.Google Scholar
  7. 7.
    T. Welte, K. Garimorth, S. Philipp, and W. Doppler (1994). Prolactin-dependent activation of a tyrosine phosphorylated DNA binding factor in mouse mammary epithelial cells. Mol. Endocrinol. 8:1091–1102.Google Scholar
  8. 8.
    B. Raught, W. S.-L. Liao, and J. M. Rosen (1995). Developmentally and hormonally regulated CCAAT/enhancer-binding protein isoforms influence β-casein gene expression. Mol. Endocrinol. 9:1223–1232.Google Scholar
  9. 9.
    H. Wakao, F. Gouilleux, and B. Groner (1994). Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 13:2182–2191.Google Scholar
  10. 10.
    B. Groner and F. Gouilleux (1995). Prolactin-mediated gene activation in mammary epithelial cells. Curr. Opin. Genetics Develop. 5:587–594.Google Scholar
  11. 11.
    C. Schindler and J. E. Darnell (1995). Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Ann. Rev. Biochem. 64:621–651.Google Scholar
  12. 12.
    W. Doppler (1994). Regulation of gene expression by prolactin. Rev. Physiol. Biochem. Pharmacol. 124:93–130.Google Scholar
  13. 13.
    R. K. Ball, R. R. Friis, C. A. Schoenenberger, W. Doppler and B. Groner (1988). Prolactin regulation of β-casein expression and of a cytosolic 120 kDa protein in a cloned mouse mammary epithelial cell line. EMBO J. 7:2089–2095.Google Scholar
  14. 14.
    W. Doppler, B. Groner, and R. K. Ball (1989). Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat β-casein gene promoter constructs in a mammary epithelial cell line. Proc. Natl. Acad. Sci. U.S.A. 86:104–108.Google Scholar
  15. 15.
    D. Taverna, B. Groner, and N. E. Hynes (1991). Epidermal growth factor receptor, platelet-derived growth factor receptor and c-erbB2 receptor activation all promote growth but have distinctive effects upon mouse mammary epithelial cell differentiation. Cell Growth Different. 2:145–154.Google Scholar
  16. 16.
    G. R. Merlo, D. Graus-Porta, N. Cella, B. M. Marte, D. Taverna, and N. E. Hynes (1996). Growth, differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur. J. Cell. Biol. 70:97–105.Google Scholar
  17. 17.
    J. M. Boutin, C. Jolicoeur, H. Okamura, J. Gagnon, M. Edery, M. Shirota, D. Banville, I. Dusanter-Fourt, J. Dijiane, and P. A. Kelly (1988). Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77.Google Scholar
  18. 18.
    J. A. Davis and D. I. H. Linzer (1989). Expression of multiple forms of the prolactin receptor in mouse liver. Mol. Endocrinol. 3:674–680.Google Scholar
  19. 19.
    K. Buck, M. Vanek, B. Groner, and R. K. Ball (1992). Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expressed and regulated in murine tissues and the mammary cell line HC11. Endocrinology 130:1108–1114.Google Scholar
  20. 20.
    S. Ali, I. Pellegrini, and P. A. Kelly (1991). A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor. J. Biol. Chem. 266:20110–20117.Google Scholar
  21. 21.
    L. Lesueur, M. Edery, S. Ali, J. Paly, P. A. Kelly, and J. Djiane (1991). Comparison of long and short forms of the prolactin receptor on prolactin-induced milk protein gene transcription. Proc. Natl. Acad. Sci. U.S.A. 88:824–828.Google Scholar
  22. 22.
    M. Edery, C. Levi-Meyrueis, J. Paly, P. A. Kelly, and J. Djiane (1994). A limited cytoplasmic region of the prolactin receptor critical for signal transduction. Mol. Cell. Endocrinol. 102:39–44.Google Scholar
  23. 23.
    K. D. O'Neal and L-Y. Yu-Lee (1994). Differential signal transduction of the short, Nb2 and long prolactin receptors. J. Biol. Chem. 269:26076–26082.Google Scholar
  24. 24.
    L. DaSilva, O. M. Z. Howard, H. Rui, R. A. Kirken, and W. L. Farrar (1994). Growth signaling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J. Biol. Chem. 269:18267–18270.Google Scholar
  25. 25.
    H. Rui, J. Y. Djeu, G. A. Evans, P. A. Kelly, and W. L. Farrar (1992). Prolactin receptor triggering: Evidence for rapid tyrosine kinase activation. J. Biol. Chem. 267:24076–24081.Google Scholar
  26. 26.
    J. N. Ihle, B. A. Witthuhn, F. W. Quelle, K. Yamamoto, W. E. Thierfelder, B. Kreider, and O. Silvennoinen (1994). Signaling by the cytokine receptor superfamily: JAKs and STATs. TIBS 19:222–227.Google Scholar
  27. 27.
    I. Dusanter-Fourt, O. Muller, A. Ziemiecki, P. Mayeux, B. Drucker, J. Djiane, A. Wilks, A. G. Harpur, S. Fisher, and S. Gisselbrecht (1994). Identification of JAK protein tyrosine kinases as signaling molecules for prolactin. Functional analysis of prolactin receptor and prolactin-erythropoietin receptor chimera expressed in lymphoid cells. EMBO J. 13:2583–2591.Google Scholar
  28. 28.
    H. Rui, R. A. Kirken, and W. L. Farrar (1994). Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J. Biol. Chem. 269:5364–5368.Google Scholar
  29. 29.
    G. S. Campbell, L. S. Argetsinger, J. N. Ihle, P. A. Kelly, J. A. Rillema, and C. Carter-Su (1994). Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc. Natl. Acad. Sci. U.S.A. 91:5232–5236.Google Scholar
  30. 30.
    B. A. Witthuhn, F. W. Quelle, O. Silvennoinen, T. Yi, B. Tang, O. Miura, and J. N. Ihle (1993). JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74:227–236.Google Scholar
  31. 31.
    L. S. Argetsinger, G. S. Campell, X. Yang, B. A. Witthuhn, O. Silvennoinen, J. N. Ihle, C. Carter-Su (1993). Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74:237–244.Google Scholar
  32. 32.
    J.-J. Lebrun, S. Ali, A. Ullrich, and P. A. Kelly (1995). Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J. Biol. Chem. 270:10664–10670.Google Scholar
  33. 33.
    M. J. Waters, N. Daniel, C. Bignon, and J. Djiane (1995). The rabbit mammary gland prolactin receptor is tyrosine-phosphorylated in response to prolactin in vivo and in vitro. J. Biol. Chem. 270:5136–5143.Google Scholar
  34. 34.
    F. Gouilleux, H. Wakao, M. Mundt, and B. Groner (1994). Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 13:4361–4369.Google Scholar
  35. 35.
    C. H. Streuli, G. M. Edwards, M. Delcommenne, C. B. A. Whitelaw, T. G. Burdon, C. Schindler, and C. J. Watson (1995). Stat5 as a target for regulation by extracellular matrix. J. Biol. Chem. 270:21639–21644.Google Scholar
  36. 36.
    A. V. Kazansky, B. Raught, S. M. Lindsey, Y.-F. Wang, and J. M. Rosen (1995). Regulation of mammary gland factor/Stat5a during mammary gland development. Mol. Endocrinol. 9:1598–1609.Google Scholar
  37. 37.
    N. Tourkine, C. Schindler, M. Larose, and L.-M. Houdebine (1995). Activation of STAT factors by prolactin, interferon-γ, growth hormones, and a tyrosine phosphatase inhibitor in rabbit primary mammary epithelial cells. J. Biol. Chem. 270:20952–20961.Google Scholar
  38. 38.
    X. Liu, G. W. Robinson, F. Gouilleux, B. Groner, and L. Hennighausen (1995). Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl. Acad. Sci. U.S.A. 92:8831–8835.Google Scholar
  39. 39.
    M. David, E. F. Petricoin III, K.-I. Igarashi, G. M. Feldman, D. S. Finbloom, and A. C. Larner (1994). Prolactin activates the interferon-regulated p91 transcription factor and the Jak2 kinase by tyrosine phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 91:7174–7178.Google Scholar
  40. 40.
    C. Pallard, F. Gouilleux, M. Charon, B. Groner, S. Gisselbrecht, and I. Dusanter-Fourt (1995). Interleukin-3, erythropoietin, and prolactin activate a Stat5-like factor in lymphoid cells. J. Biol. Chem. 270:15942–15945.Google Scholar
  41. 41.
    L. DaSilva, H. Rui, R. A. Erwin, O. M. Z. Howard, R. A. Kirken, M. G. Malabarba, R. H. Hackett, A. C. Larner, and W. L. Farrar (1996). Prolactin recruits STAT1, STAT3, and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515, and TYR580. Mol. Cell. Endocrinol. 117:131–140.Google Scholar
  42. 42.
    Z. Songyang, S. E. Shoelson, J. McGlade, P. Olivier, T. Pawson, X. R. Bustelo, M. Barbacid, H. Sabe, H. Hanafusa, T. Yi, R. Ren, D. Baltimore, S. Ratnofsky, R. A. Feldman, and L. C. Cantley (1994). Specific motifs recognized by the SH2 domains of CSK, 3BP2, FES/FPS, GRB2, HPC, SHC, SYK, and VAV. Mol. Cell. Biol. 14:2777–2785.Google Scholar
  43. 43.
    J.-J. Lebrun, S. Ali, V. Goffin, A. Ullrich, and P. A. Kelly (1995). A single phosphotyrosine residue of the prolactin receptor is responsible for activation of gene transcription. Proc. Natl. Acad. Sci. U.S.A. 92:4031–4035.Google Scholar
  44. 44.
    F. W. Quelle, D. Wang, T. Nosaka, W. E. Thierfelder, D. Stravopodis, Y. Weinstein, and J. N. Ihle (1996). Erythropoietin induces activation of Stat5 through association with specific tyrosines on the receptor that are not required for a mitogenic response. Mol. Cell. Biol. 16:1622–1631.Google Scholar
  45. 45.
    S. Gobert, S. Chretien, F. Gouilleux, O. Muller, C. Pallard, I. Dusanter-Fourt, B. Groner, C. Lacombe, S. Gisselbrecht, and P. Mayeux (1996). Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STAT5 activation. EMBO J. 15:2434–2441.Google Scholar
  46. 46.
    J. X. Lin, T. S. Migone, M. Tsang, M. Friedmann, J. A. Weatherbee, L. Zhou, A. Yamauchi, E. T. Bloom, J. Mietz, S. John, et al. (1995). The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2:331–339.Google Scholar
  47. 47.
    A. L.-F. Mui, H. Wakao, A.-M. O'Farrell, N. Harada, and A. Miyajima (1995). Interleukin-2, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 14:1166–1175.Google Scholar
  48. 48.
    S. L. Pelech (1996). Signaling pathways: kinase connections on the cellular intranet. Current Biol. 6:551–554.Google Scholar
  49. 49.
    W. M. Kavanaugh and L. T. Williams (1994). An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 266:1862–1865.Google Scholar
  50. 50.
    R. A. Erwin, R. A. Kirken, M. G. Malabarba, W. L. Farrar, and H. Rui (1995). Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology 136:3512–3518.Google Scholar
  51. 51.
    O. Silvennoinen, B. A. Witthuhn, F. W. Quelle, J. L. Cleveland, T. Yi, and J. N. Ihle (1993). Structure of the murine JAK2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc. Natl. Acad. Sci. U.S.A. 90:8429–8433.Google Scholar
  52. 52.
    M. Wartmann, N. Cella, P. Hofer, B. Groner, X. Liu, L. Hennighausen, and N. E. Hynes (1996). Lactogenic hormone activation of Stat5 and transcription of the β-casein gene in mammary epithelial cells is independent of p42 ERK2 MAP kinase activity. J. Biol. Chem. (in Press).Google Scholar
  53. 53.
    C. V. Clevenger, T. Torigoe, and J. C. Reed (1994). Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J. Biol. Chem. 269:5559–5565.Google Scholar
  54. 54.
    Y.-P. Rao, D. J. Buckley, and A. R. Buckley (1995). Rapid activation of mitogen-activated protein kinase and p21ras by prolactin and interleukin 2. Cell Growth Different. 6:1235–1244.Google Scholar
  55. 55.
    Z. Wen, Z. Zhong, and J. E. Darnell, Jr. (1995). Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250.Google Scholar
  56. 56.
    J. N. Ihle (1996). STATs and MAPs: obligate or opportunistic partners in signaling. BioEssays 18:95–98.Google Scholar
  57. 57.
    C. Beadling, J. Ng, J. W. Babbage, and D. A. Cantrell (1996). Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase pathway distinct from the Raf1/ERK2 MAP kinase pathway. EMBO J. 15:1902–1913.Google Scholar
  58. 58.
    P. A. Ram, S.-H. Park, H. K. Choi, and D. J. Waxman (1996). Growth hormone activation of Stat1, Stat5, and Stat5 in rat liver. J. Biol. Chem. 271:5929–5940.Google Scholar
  59. 59.
    D. R. Alessi, A. Cuenda, P. Cohen, D. T. Dudley, and A. R. Saltiel (1995). PD98059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270:27489–27494.Google Scholar
  60. 60.
    H. Sun and N. K. Tonks (1994). The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem. Sci. 19:480–485.Google Scholar
  61. 61.
    T. Yi, J. L. Cleveland, and J. N. Ihle (1992). Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p 12–13. Mol. Cell. Biol. 12:836–846.Google Scholar
  62. 62.
    S. Ali, Z. Chen, J.-J. Lebrun, W. Vogel, A. Kharitonenkov, P. A. Kelly, and A. Ullrich (1996). PTP1D is a positive regulator of the prolactin signal leading to b-casein promoter activation. EMBO J. 15:135–142.Google Scholar
  63. 63.
    U. Klingmüller, U. Lorenz, L. C. Cantley, B. G. Neel, and H. F. Lodish (1995). Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80:729–738.Google Scholar
  64. 64.
    C. D. Roskelley, A. Srebrow, and M. J. Bissell (1995). A hierarchy of ECM-mediated signaling regulates tissue-specific gene expression. Curr. Opin. Cell Biol. 7:736–747.Google Scholar
  65. 65.
    R. Chammas, D. Taverna, N. Cella, C. Santos, and N. E. Hynes (1994). Laminin and tenascin assembly and expression regulate HC11 mouse mammary cell differentiation. J. Cell Sci. 107:1031–1040.Google Scholar
  66. 66.
    N. E. Hynes, D. Taverna, I.-M. Harwerth, F. Ciardiello, D. S. Salomon, T. Yamamoto, and B. Groner (1990). Epidermal growth factor receptor, but not c-erbB2 activation prevents lactogenic hormone induction of the β-casein gene in mouse mammary epithelial cells. Mol. Cell. Biol. 10:4027–4034.Google Scholar
  67. 67.
    B. Happ, N. E. Hynes, and B. Groner (1993). Ha-ras and v-raf oncogenes, but not int-2 and c-myc, interfere with the lactogenic hormone dependent activation of the mammary gland specific transcription factor. Cell Growth Different. 4:9–15.Google Scholar
  68. 68.
    B. M. Marte, T. Meyer, S. Stabel, G. J. R. Standke, S. Jaken, D. Fabbro, and N. E. Hynes (1994). Protein kinase C and mammary cell differentiation: involvement of Protein Kinase C α in the induction of β-casein expression. Cell Growth Different. 5:239–247.Google Scholar
  69. 69.
    A. Marti, B. Jehn, E. Costello, N. Keon, G. Ke, F. Martin, and R. Jaggi (1994). Protein kinase A and AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene 9:1213–1223.Google Scholar
  70. 70.
    M. Schmitt-Ney, B. Happ, R. K. Ball, and B. Groner (1992). Developmental and environmental regulation of a mammary gland specific nuclear factor essential for transcription of the gene encoding β-casein. Proc. Natl. Acad. Sci. U.S.A. 89:3130–3134.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Nancy E. Hynes
    • 1
    Email author
  • Nathalie Cella
    • 1
  • Markus Wartmann
    • 2
  1. 1.Friedrich Miescher InstituteBaselSwitzerland
  2. 2.Ciba-Geigy Ltd.BaselSwitzerland

Personalised recommendations