Hydrobiologia

, Volume 499, Issue 1–3, pp 135–145 | Cite as

Current velocity and invertebrate grazing regulate stream algae: results of an in situ electrical exclusion

Article

Abstract

Current velocity is a pervasive feature of lotic systems, yet this defining environmental variable is rarely examined as a factor for regulating stream herbivory. To investigate how current modifies herbivory in the upper Colorado River, U.S.A., loops of electrified fencing wire were used to reduce in situ grazer densities on 30 × 30 cm tile substrates. After 45 d, electrified tiles had significantly fewer grazers (P = 0.03) and >2X more algal biomass than controls (P = 0.0002). Reduced grazing on electrified tiles yielded periphytic assemblages having more diatoms and chlorophytes, as well as greater algal species richness. Current velocity effects alone did not significantly regulate algal abundance; however, the interaction between current velocity and grazer exclusion resulted in more algae in slow vs. fast current (P = 0.02). Grazer abundances were similar between fast and slow current velocities, suggesting that grazers in the Colorado River differ in their ability to regulate algae across the current velocity gradient. Our results indicate that stream current-mediated herbivory in streams may be more important than is generally recognized.

benthic algae current velocity stream herbivory environmental gradients electrified substrates algal–grazer interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association, 1992. Standard methods for the examination of water and waste water. 18th. edition. American Public Health Association, Washington D.C.Google Scholar
  2. Arens, W., 1989. Comparative functional morphology of the mouthparts of stream animals feeding on epilithic algae. Archiv für Hydrobiol. Suppl. 83: 253–354.Google Scholar
  3. Bertness, M. D. & R. Callaway, 1994. Positive interactions in communities. Trends Ecol. Evol. 9: 191–193.Google Scholar
  4. Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, J.R., M. I. Bothwell & R. L. Lowe (eds). Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego: 31–56.Google Scholar
  5. Biggs, B. J. F., D. G. Goring & V. I. Nikora, 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J. Phycol. 34: 598–607.Google Scholar
  6. Biggs, B. J. F. & C. W. Hickey, 1994. Periphyton responses to a hydraulic-gradient in a regulated river in New Zealand. Freshwat. Biol. 32: 49–59.Google Scholar
  7. Brown, G. G., R. H. Norris, W. A. Maher & K. Thomas, 2000. Use of electricity to inhibit macroinvertebrate grazing of epilithon in experimental treatments in flowing waters. J. N. Am. Benthol. Soc. 19: 176–185.Google Scholar
  8. Cardinale, B. J., K. Nelson & M. A. Palmer, 2000. Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91: 175–183.Google Scholar
  9. DeNicola, D. M. & C. D. McIntire, 1990. Effects of substrate relief on the distribution of periphyton in laboratory streams. 1. Hydrology. J. Phycol. 26: 624–633.Google Scholar
  10. DeNicola, D.M. & C. D. McIntire, 1991. Effects of hydraulic refuge and irradiance on grazer-periphyton interactions in laboratory streams. J. N. Am. Benthol. Soc. 10: 251–262.Google Scholar
  11. Dodd, J. J., 1987. The Illustrated Flora of Illinois: Diatoms. Southern Illinois University Press., Carbondale.Google Scholar
  12. Dodds, W. K. & J. L. Marra, 1989. Behaviors of the midge, Cricotopus (Diptera; Chironomidae) related to mutualism with Nostoc parmeloides (Cyanobacteria). Aquat. Insects 11: 201–208.Google Scholar
  13. Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.Google Scholar
  14. Dudley, T. L. & C. M. D'Antonio, 1991. The effects of substrate texture, grazing, and disturbance on macroalgal establishment in streams. Ecology 72: 297–309.Google Scholar
  15. Feminella, J. W. & C. P. Hawkins, 1995. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. J. N. Am. Benthol. Soc. 14: 465–509.Google Scholar
  16. Feminella, J. W. & V. H. Resh, 1991. Herbivorous caddisflies, macroalgae, and epilithic microalgae: dynamic interactions in a stream grazing system. Oecologia 87: 247–256.CrossRefGoogle Scholar
  17. Gawne, B., 1997. Inconsistency in the experimentally derived relationship between epilithon abundance and the micro-distribution of Agapetus monticolus (Trichoptera). Aust. J. Ecol. 22: 325–333.Google Scholar
  18. Gordon, N. D., T. A. McMahon & B. L. Finlayson, 1992. Stream hydrology: an introduction for ecologists. John Wiley & Sons, Chichester.Google Scholar
  19. Gregory, S. V., 1983. Plant-herbivore interactions in stream systems. Pages 157-189 In Barnes J. R. & G. W. Minshall (eds), Stream Ecology. Plenum Press, New York: 157–189.Google Scholar
  20. Hansen, R. A., D. D. Hart & R. A. Merz, 1991. Flow mediates predator-prey interactions between triclad flatworms and larval black flies. Oikos 60: 187–196.Google Scholar
  21. Hart, D. D., 1985. Causes and Consequences of Territoriality in a Grazing Stream Insect. Ecology 66: 404–414.Google Scholar
  22. Hart, D. D., 1992. Community organization in streams – the importance of species interactions, physical factors, and chance. Oecologia 91: 220–228.Google Scholar
  23. Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: The pervasive effects of flow on benthic organisms. Ann. Rev. Ecol. Syst. 30: 363–395.Google Scholar
  24. Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403–424.Google Scholar
  25. Kohler, S. L. & M. A. McPeek, 1989. Predation risk and the foraging behavior of stream insects. Ecology 70: 1811–1825.Google Scholar
  26. Lamberti, G. A., 1996. The role of periphyton in benthic food webs. In Stevenson, J. R., M. I. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego: 533–572Google Scholar
  27. Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendal/Hunt Publishing Co., Dubuque, Iowa.Google Scholar
  28. Mesick, C. F. & J. C. Tash, 1980. Effects of electricity on some benthic stream insects. Trans. Am. Fish. Soc. 109: 416–422.Google Scholar
  29. Minshall, G. W., 1978. Autotrophy in stream ecosystems. Bioscience 28: 767–771.Google Scholar
  30. Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. Bioscience 29: 349–352.Google Scholar
  31. Palmer, T. M., 1995. The Influence of spatial heterogeneity on the behavior and growth of two herbivorous stream insects. Oecologia 104: 476–486.Google Scholar
  32. Passey, S. I., 2001. Spatial paradigms of lotic diatom distribution: a landscape ecology perspective. J. Phycol. 37: 370–378.Google Scholar
  33. Peckarsky, B. L., 1996. Alternative predator avoidance syndromes of stream-dwelling mayfly larvae. Ecology 77: 1888–1905.Google Scholar
  34. Poff, N. L., N. J. Voelz, J. V. Ward & R. E. Lee, 1990. Algal colonization under four experimentally-controlled current regimes in a high mountain stream. J. N. Am. Benthol. Soc. 9: 303–318.Google Scholar
  35. Poff, N. L. & J. V. Ward, 1991. Drift responses of benthic invertebrates to experimental streamflow variation in a hydrologically stable stream. Can. J. Fish. Aquat. Sci. 48: 1926–1936.Google Scholar
  36. Poff, N. L. & J. V. Ward, 1992. Heterogeneous currents and algal resources mediate in situ foraging activity of a mobile stream grazer. Oikos 65: 465–478.Google Scholar
  37. Poff, N. L., T. Wellnitz & J. Monroe, 2003. Redundancy among stream grazers across a current velocity gradient. Oecologia 134: 262–269.PubMedGoogle Scholar
  38. Power, M. E., 1992. Hydrologic and trophic controls of seasonal algal blooms in northern California rivers. Archiv für Hydrobiol. 125: 385–410.Google Scholar
  39. Pringle, C. M. & G. A. Blake, 1994. Quantitative effects of atyid shrimp (Decopoda: Atyidae) on the depositional environment in a tropical stream: use of electricity for experimental exclusion. Can. J. Fish. Aquat. Sci. 51: 1443–1450.Google Scholar
  40. Rader, R. B. & J. V. Ward, 1987. Resource utilization, overlap and temporal dynamics in a guild of mountain stream insects. Freshwat. Biol. 18: 521–528.Google Scholar
  41. Reynolds, J. B., 1996. Electrofishing. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques. American Fisheries Society, Bethesda, MD: 221–253.Google Scholar
  42. Rosemond, A. D. & S. H. Brawley, 1996. Species specific characteristics explain the persistence of Stigeoclonium tenue (Chlorophyta) in a woodland stream. J. Phycol. 32: 54–63.Google Scholar
  43. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. 3rd. edition. W. H. Freeman & Co., New York.Google Scholar
  44. Steinman, A. D., 1991. Effects of herbivore size and hunger level on periphyton communities. J. Phycol. 27: 54–59.Google Scholar
  45. Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, J. R., M. I. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego: 341–366.Google Scholar
  46. Steinman, A. D. & G. A. Lamberti, 1996. Biomass and pigments of benthic algae. In Hauer, F. R. & G. A. Lamberti (eds). Methods in Stream Ecology. Academic Press, San Diego: 295–313.Google Scholar
  47. Stevenson, R. J., 1996. The stimulation and drag of current. In Stevenson, J. R., M. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, Inc., San Diego:321–340.Google Scholar
  48. Stevenson, R. J., C. G. Peterson, D. B. Kirschtel, C. C. King & N. C. Tuchman, 1991. Density-dependent growth, ecological strategies, and the effects of nutrients and shading on benthic diatom succession in streams. J. Phycol. 27: 59–69.Google Scholar
  49. Swan, C. M. & M. A. Palmer, 2000. What drives small-scale spatial patterns in lotic meiofauna communities? Freshwat. Biol. 44: 109–121.Google Scholar
  50. Taylor, B.W., A. R. McIntosh & B. L. Peckarsky. 2002. Reach-scale manipulations show invertebrate grazers depress algal resources in streams. Limnol. Oceanogr 47: 893–899.Google Scholar
  51. Taylor, B.W., A. R. McIntosh & B. L. Peckarsky, 2001. Sampling stream invertebrates using electroshocking techniques: implications for basic and applied research. Can. J. Fish. Aquat. Sci. 58: 437–445.Google Scholar
  52. Tuchman, M. L. & R. J. Stevenson, 1980. Comparison of clay tile, sterilized rock, and natural substrate diatom communities in a small stream in southeastern Michigan, U.S.A. Hydrobiologia 75: 73–79.Google Scholar
  53. Walker, B., A. Kinzig & J. Langridge, 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.Google Scholar
  54. Wellnitz, T. & N. L. Poff, 2001. Functional redundancy in heterogeneous environments: implications for conservation. Ecol. Lett. 4: 177–179.Google Scholar
  55. Wellnitz, T. A., N. L. Poff, G. Cosyleon & B. Steury, 2001. Current velocity and spatial scale as determinants of the distribution and abundance of two rheophilic herbivorous insects. Landscape Ecol. 16: 111–120.Google Scholar
  56. Wellnitz, T. A. & J. V. Ward, 1998. Does light intensity modify the effect mayfly grazers have on periphyton? Freshwat. Biol. 39: 135–149.Google Scholar
  57. Wellnitz, T. A. & J. V. Ward, 2000. Herbivory and irradiance shape periphytic architecture in a Swiss alpine stream. Limnol. Oceanogr. 45: 64–75.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ronald W. Opsahl
    • 1
  • Todd Wellnitz
    • 2
  • N. LeRoy Poff
    • 2
  1. 1.Department of Fisheries and Wildlife BiologyColorado State UniversityFt. CollinsU.S.A.
  2. 2.Lewis and Clark Law SchoolPortlandU.S.A

Personalised recommendations