Journal of Chemical Ecology

, Volume 29, Issue 11, pp 2539–2550 | Cite as

Volatile Emissions Triggered by Multiple Herbivore Damage: Beet Armyworm and Whitefly Feeding on Cotton Plants

  • Cesar Rodriguez-Saona
  • Steven J. Crafts-Brandner
  • Luis A. Cañas

Abstract

Plants are commonly attacked by more than one species of herbivore, potentially causing the induction of multiple, and possibly competing, plant defense systems. In the present paper, we determined the interaction between feeding by the phloem feeder silverleaf whitefly (SWF), Bemisia tabaci Gennadius (B-biotype = B. argentifolii Bellows and Perring), and the leaf-chewing beet armyworm (BAW), Spodoptera exigua Hübner, with regard to the induction of volatile compounds from cotton plants. Compared to undamaged control plants, infestation with SWF did not induce volatile emissions or affect the number and density of pigment glands that store volatile and nonvolatile terpenoid compounds, whereas infestation by BAW strongly induced plant volatile emission. When challenged by the two insect herbivores simultaneously, volatile emission was significantly less than for plants infested with only BAW. Our results suggest that tritrophic level interactions between cotton, BAW, and natural enemies of BAW, that are known to be mediated by plant volatile emissions, may be perturbed by simultaneous infestation by SWF. Possible mechanisms by which the presence of whiteflies may attenuate volatile emissions from caterpillar-damaged cotton plants are discussed.

Bemisia argentifolii silverleaf whitefly Spodoptera exigua beet armyworm Gossypium hirsutum cotton herbivore-induced volatiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A. A. and Karban, R. 2000. Specificity of constitutive and induced resistance: Pigment glands influence mites and caterpillars on cotton plants. Entomol. Exp. Appl. 96:39–49.Google Scholar
  2. Birkett, M. A., Chamberlain, K., Guerrieri, E., Pickett, J. A., Wadhams, L. J., and Yasuda, T. 2003. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. J. Chem. Ecol. 29:1589–1600.Google Scholar
  3. Bostock, R. M., Karban, R., Thaler, J. S., Weyman, P. D., and Gilchrist, D. 2001. Signal interactions in induced resistance to pathogens and insect herbivores. Eur. J. Plant Pathol. 107:103–111.Google Scholar
  4. Chu, C., Freeman, T. P., Buckner, J. S., Henneberry, T. J., Nelson, D. R., Walker, G. P., and Natwick, E. T. 2000. Bemisia argentifolii (Homoptera: Aleyrodidae) colonization on upland cottons and relationships to leaf morphology and leaf age. Ann. Entomol. Soc. Am. 93:912–919.Google Scholar
  5. De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.Google Scholar
  6. Dicke, M. and Vet, L. E. M. 1999. Plant-carnivore interactions: Evolutionary and ecological consequences for plant, herbivore, and carnivore, pp. 483–520, in H. Olff, V. K. Brown, and R. H. Drent, (Eds.). Herbivores: Between Plants and Predators. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  7. Elzen, G. W., Williams, H. J., Bell, A. A., Stipanovic, R. D., and Vinson, S. B. 1985. Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography. J. Agric. Food Chem. 33:1079–1082.Google Scholar
  8. Fidantsef, A. L., Stout, M. J., Thaler, J. S., Duffey, S. S., and Bostock, R. M. 1999. Signal interactions in pathogen and insect attack: Expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:97–114.Google Scholar
  9. Fritzsche Hoballah, M. E., Tamo, C., and Turlings, T. C. J. 2002. Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: Is quality or quantity important? J. Chem. Ecol. 28:951–968.Google Scholar
  10. Gouinguené, S., Alborn, H., and Turlings, T. C. J. 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29:145–162.Google Scholar
  11. Guerrieri, E. 1997. Flight behavior of Encarsia formosa in response to plant and host stimuli. Entomol. Exp. Appl. 82:129–133.Google Scholar
  12. Heath, R. R. and Manukian, A. 1994. An automated system for use in collecting volatile chemicals released from plants. J. Chem. Ecol. 20:593–607.Google Scholar
  13. Inbar, M., Doostdar, H., and Mayer, R. T. 1999. Effects of sessile whitefly nymphs (Homoptera: Aleyrodidae) on leaf-chewing larvae (Lepidoptera: Noctuidae). Environ. Entomol. 28:353–357.Google Scholar
  14. Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois.Google Scholar
  15. Mayer, R. T., Mccollum, T. G., McDonald, R. E., Polston, J. E., and Doostdar, H. 1996. Bemisia feeding induces pathogenesis-related proteins in tomato, pp. 179–188, in D. Gerling and R. T. Mayer (Eds.). Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Intercept Ltd., Andover, United Kingdom.Google Scholar
  16. McAuslane, H. J. and Alborn, H. T. 2000. Influence of previous herbivory on behavior and development of Spodoptera exigua larvae on glanded and glandless cotton. Entomol. Exp. Appl. 97:283–291.Google Scholar
  17. McAuslane, H. J., Alborn, H. T., and Toth, J. P. 1997. Systemic induction of terpenoid aldehydes in cotton pigment glands by feeding of larval Spodoptera exigua. J. Chem. Ecol. 23:2861–2879.Google Scholar
  18. McCall, P. J., Turlings, T. C. J., Loughrin, J., Proveaux, A. T., and Tumlinson, J. H. 1994. Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J. Chem. Ecol. 20:3039–3050.Google Scholar
  19. Naranjo, S. E. and Flint, H. M. 1994. Spatial distribution of preimaginal Bemisia tabaci (Homoptera: Aleyrodidae) in cotton and development of fixed-precision, sequential sampling plans. Environ. Entomol. 23:254–264.Google Scholar
  20. Noldus, L. P. J. and van Lenteren, J. C. 1990. Host aggregation and parasitoid behavior: Biological control in a closed system, pp. 229–262, in M. Mackauer, L. E. Ehler, and J. Roland (Eds.). Critical Issues in Biological Control. Intercept Ltd., Andover, United Kingdom.Google Scholar
  21. Paré, P. W. and Tumlinson, J. H. 1997. Induced synthesis of plant volatiles. Nature 385:30–31.Google Scholar
  22. Rodriguez-saona, C., Crafts-brandner, S. J., Paré, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679–695.Google Scholar
  23. Rodriguez-saona, C., Crafts-brandner, S. J., Williams, L., III, and Paré, P. W. 2002. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J. Chem. Ecol. 28:1733–1747.Google Scholar
  24. Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24:303–318.Google Scholar
  25. Shimron, O., Hefetz, A., and Gerling, D. 1992. Arrestment responses of Eretmocerus species and Encarsia deserti (Hymenoptera: Aphelinidae) to Bemisia tabaci honeydew. J. Insect Behav. 5:517–526.Google Scholar
  26. Shiojiri, K., Takabayashi, J., Yano, S., and Takafuji, A. 2000. Flight response of parasitoids toward plant–herbivore complexes: A comparative study of two parasitoid-herbivore systems on cabbage plants. App. Entomol. Zool. 35:87–92.Google Scholar
  27. Shiojiri, K., Takabayashi, J., Yano, S., and Takafuji, A. 2001. Infochemically mediated tritrophic interaction webs on cabbage plants. Popul. Ecol. 43:23–29.Google Scholar
  28. Stout, M. J., Workman, K. V., Bostock, R. M., and Duffey, S. S. 1998. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113:74–81.Google Scholar
  29. Sütterlin, S. and van Lenteren, J. C. 2000. Pre-and post-landing response of the parasitoid Encarsia formosa to whitefly hosts on Gerbera jamesonii. Entomol. Exp. Appl. 96:299–307.Google Scholar
  30. Thaler, J. S., Fidantsef, A. L., and Bostock, R. M. 2002. Antagonism between jasmonate-and salicylate-mediated induced plant resistance: Effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J. Chem. Ecol. 28:1143–1171.Google Scholar
  31. Thompson, J. N. 1998. Coping with multiple enemies: 10 years of attack on Lomatium dissectum plants. Ecology 79:2550–2554.Google Scholar
  32. Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. 1998. The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biol. Cont. 11:122–129.Google Scholar
  33. van de Ven, W. T. G., LeVesque, C. S., Perring, T. M., and Walling, L. L. 2000. Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423.Google Scholar
  34. van Lenteren, J. C., Nell, H. W., Sevenster-van der Lelie, L. A., and Woets, J. 1976. The parasite-host relationship between Encarsia formosa (Hymenoptera: Aphelinidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). I. Host finding by the parasite. Entomol. Exp. Appl. 20:123–130.Google Scholar
  35. Vos, M., Berrocal, S. M., Karamaouna, F., Hemerik, L., and Vet, L. E. M. 2001. Plant-mediated indirect effects and the persistence of parasitoid–herbivore communities. Ecol. Lett. 4:38–45.Google Scholar
  36. Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Cesar Rodriguez-Saona
    • 1
    • 2
  • Steven J. Crafts-Brandner
    • 1
  • Luis A. Cañas
    • 3
  1. 1.Western Cotton Research LaboratoryUSDA-ARSPhoenixUSA
  2. 2.Department of BotanyUniversity of TorontoTorontoCanada
  3. 3.Department of EntomologyUniversity of Arizona, Maricopa Agricultural CenterMaricopaUSA

Personalised recommendations