, Volume 48, Issue 6, pp 611–636 | Cite as

Assessing the risks of insect resistant transgenic plants on entomophagous arthropods Bt-maize expressing Cry1Ab as a case study

  • Anna Dutton
  • Jörg Romeis
  • Franz Bigler


One of the primary concerns related to theadoption of insect resistant transgenic plantsin the environment is the detrimental effectthat these may pose on non-target organisms,including entomophagous arthropods (parasitoidsfand predators) which have an important functionin regulating pests. Despite the fact thatregulatory bodies require information regardingthe potential risk of releasing transgenicplants in the environment, to date, no specificprotocols have been designed for assessing therisks of insect resistant transgenic crops onentomophagous arthropods. Here a framework forrisk assessment is proposed to evaluate theeffects of insect resistant plants onentomophagous arthropods. Using maizeexpressing the Bacillus thuringiensisgene which codes for the Cry1Ab toxin, weillustrate the procedure necessary forassessing the risks. As a first step, it isrequired to determine which entomophagousarthropods play a major role in regulatingmaize pests, and which may be at risk. Becausethe risk which transgenic plants pose toentomophagous arthropods depends on both, theirexposure, and their sensitivity to theinsecticidal protein, it is essential todetermine, as a second step, if and at whatlevel organisms are exposed to the transgenecompound. Exposure will be associated with thefeeding behaviour of phytophagous andentomophagous arthropods together with thetissue and cell specific temporal and spatialexpression of the insecticidal protein. Forthose organisms which could potentially beexposed to the insecticidal protein,sensitivity tests, as a third step, should beperformed to assess toxicity. The testingprocedure and the type of tests which should beadopted to quantify the effects of insectresistant plants on natural enemies aresubsequently illustrated. Taking the greenlacewing Chrysoperla carnea as anexample, we propose a procedure on how toperform tests and give evidence that Bt-maizeposes no risk to this predator.

Chrysoperla carnea exposure genetically engineered crops parasitoids predators risk assessment test procedure tiered system toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Deeb, M.A., G.E. Wilds and R. Higgins, 2001. No effect of Bacillus thuringiensis corn and Bacillus thuringiensis on the predator Orius insidiosus (Hemiptera: Anthocoridae). Environ. Entomol. 30: 625–629.Google Scholar
  2. Anglade, P., 1975. Corn pest management in western Europe exemplified by French systems. International Project on Ostrinia nubilalis, Rep. 2: 42–46.Google Scholar
  3. Asín, L. and X. Pons, 1998. Aphid predators in maize fields. IOBC Bull. 21(8): 163–170.Google Scholar
  4. Attia, B.M., 1985. Ökologische Beziehungen zwischen Maisblattläusen, polyphagen Prädatoren und dem Maiszünsler Ostrina nubilalis Hbn. Ph.D. Thesis, Institut für Phytomedizin der Unversität Hohenheim, Germany. 96 pp.Google Scholar
  5. Bailly, R., G. Dubois, A. Fougeroux, J.P Gendrier et al., 1984. Les Auxiliaires: Enemies naturels des revageurs des cultures. Association de Coordination Technique Agricole, Paris, France. 64 pp.Google Scholar
  6. Barrett, K., N. Grandy, E.G. Harrison and S. Hassan, 1994. Guidance document on regulatory testing procedures for pesticides with non-target arthropods. In: P. Ommen (ed), SETAC, Brussels. 50 pp.Google Scholar
  7. Battraw, M.J. and T.C. Hall, 1990. Histochemical analysis of CaMV 35S promoter-ß-glucuronidase gene expression in transgenic rice plants. Plant Mol. Bio. 15: 527–538.Google Scholar
  8. Bay, T., M. Hommes and H.P. Plate, 1993. Die Florfliege Chrysoperla carnea (Stephens): Ñberblick über Systematik, Verbreitung, Biologie, Zucht und Anwendung. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft, Heft 288, Berlin. 175 pp.Google Scholar
  9. Bernal, C.C., R.M. Aguda and M.B. Cohen, 2002. Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomol. Exp. Appl. 102: 21–28.Google Scholar
  10. Bokor, P. and L. Cagáň, 1999a. Occurrence and bionomics of Erioborus terebrans (Gravenhorst) (Hymenoptera: Ichneumonidae), a parasitoid of the European corn borer, Ostrinia nubilalis Hbn. (Lepidoptera: Pyralidae), in Central Europe. Plant Protect. Sci. 35: 17–22.Google Scholar
  11. Bokor, P. and L. Cagáň, 1999b. Phenology, basic biology and parasitism of Microgaster tibialis (Hymenoptera, Braconidae), a parasitoid of the European corn borer, Ostrinia nubilalis, in Central Europe. Bio. Bratislava 54(5): 567–572.Google Scholar
  12. Bourguet, D., J. Chaufaux, A. Micoud, M. Delos, B. Naibo, F. Bombarde, G. Marque, N. Eychenne and C. Pagliari, 2002. Ostrinia nubilalis parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (Zea mays). Environ. Biosafety Res. 1: 49–60.Google Scholar
  13. Brandt, S., J. Kehr, C. Walz, A. Immlau, L. Willmitzer and J. Fisahn, 1999. A rapid method for detection of plant gene transcripts for single epidermal, mesophyll and companion cells in intact leaves. Plant J. 20: 245–250.Google Scholar
  14. Cabanettes, J.P., 1985. Mais: Bilan phytosanitaire. Phytoma 366: 15–16.Google Scholar
  15. Cagáň, L. and P. Bokor, 1998. Sinophorus turionus Ratz, the parasitoid of the European corn borer, Ostrinia nubilalis Hbn in Slovakia, Czech Republic and Southwestern Poland. Acta Pythopathol. Entomol. Hung. 33: 435–445.Google Scholar
  16. Cagáň, L., T. Turlings, P. Bokor and S. Dorn, 1999. Lydella thompsoni Herting (Dipt., Tachinidae), a parasitoid of the European corn borer, Ostrinia nubilalis Hbn. (Lep., Pyralidae) in Slovakia, Czech Republic and south-western Poland. J. Appl. Ent. 123: 577–583.Google Scholar
  17. Candolfi, M., F. Bigler, P. Cambell, U. Heimbach, R. Schmuck et al., 2000. Principles for regulatory testing and interpretation of semi-field and field studies with non-target arthropds. J. Pest Sci. 73: 141–147.Google Scholar
  18. Candolfi, M.P., K.L. Barrett, P.J. Cambell, R. Forster, N. Grandy, M-C. Huet, G. Lewis, P.A. Oomen, R. Schmuck and H. Vogt, 2001. Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods. ESCORT 2 Workshop held in Wageningen, The Netherlands. SETAC, Pensacola, FL, USA. 46 pp.Google Scholar
  19. Candolfi, M.P., K. Brown, C. Grimm, B. Reber and H. Schmidli, 2004. A faunistic approach to assess potential side-effects of genetically modified Bt-corn on non-target arthropods under field conditions. Biocontrol Science and Technology 14 (in press).Google Scholar
  20. CFIA, 2000. Decision document DD96-12; Determination of environmental safety of Northrup King seeds' European corn borer (ECB) resistant corn (Zea mays L.). Available free at Scholar
  21. Conner, A.J, T.R. Glare and J-P. Nap, 2003. The release of genetically modified crops into the environment. Part II: Overview of ecological risk assessment. Plant J. 33: 19–46.Google Scholar
  22. Corey, D., S. Kambhampati and G. Wilde, 1998. Electrophoretic analysis of Orius insidiosus (Hemiptera: Anthocoridae) feeding habitats in field corn. J. Kansas Entomol. Society 71: 11–17.Google Scholar
  23. Cowgill, S.E. and H.J. Atkinson, 2003. A sequential approach to risk assessment of transgenic plants expressing protease inhibitors: effects on nontarget herbivorous insects. Transgenic Res. 12: 439–449.Google Scholar
  24. Digilio, M.C. and F. Pennacchio, 1989. Quantitative analysis of some biological parameters characterising an Italian population of Aphidius ervi Haliday (Hymenoptera, Braconidae, Aphidiinae). B. Lab. Entomol. Agri. Filippo-Silvestri 46: 59–74.Google Scholar
  25. Dolinka, B., 1975. Pest control in corn on the Danube plain illustrated by the Hungarian examples. International Project on Ostrinia nubilalis, Rep. 2: 35–41.Google Scholar
  26. Dutton, A., H. Klein, J. Romeis and F. Bigler, 2002. Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol. Entomol. 27: 441–447.Google Scholar
  27. Eizaguirre, M. and R. Albajes, 1987. Pest status of maize arthropod pests in the northeast of Spain. In: F. Szentkiralyi (ed), International Symposium on Maize Arthropods, Gödöllö, Hungary. Plant protection Institute of the Hungarian Academy of Sciences, p. 18.Google Scholar
  28. scienceassessment.pdf.Google Scholar
  29. og_biotech/epategofbiotech.htm.Google Scholar
  30. docs/brad_006484.htm.Google Scholar
  31. Fearing, P.L., D. Brown, D. Vlachos, M. Meghji and L. Privalle, 1997. Quantitative analysis of Cry1A (b) expression in Bt maiz plants, and silage and stability of expression over successive generations. Mol. Breed. 3: 169–176.Google Scholar
  32. Fougeroux, A., 1984. Les insectes prédateurs et parasites de pucerons en culture de blé et de maïs. Phytoma June. pp. 35–39.Google Scholar
  33. Gerginov, L., 1987. Maize pests in Bulgaria and pest control. In: F. Szentkiralyi (ed), International Symposium on Maize Arthropods, Plant protection Institute of the Hungarian Academy of Sciences, Gödöllö, Hungary, p. 21.Google Scholar
  34. della Giustina W., P. Deriu and P. Foessel, 1987. Role of specific natural enemies in the control of maize aphid populations in the Paris area, preliminary results. SROP/WPRS Bull. 10(1): 12–22.Google Scholar
  35. Groot, A.T. and M. Dicke, 2002. Insect-resistant transgenic plants in a multi-trophic context. Plant J. 31: 387–406.Google Scholar
  36. Häni, F., G. Popow, H. Reinhard, A. Schwarz, K. Tanner and M. Vorlet, 1987. Integrierter Pflanzenschutz im Ackerbau. Verlag Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland, 333 pp.Google Scholar
  37. Hassan, S.A. 1992. Meeting of the workshop group Pesticides and Beneficial Organisms, University of Southampton, UK September, 1991. IOBC/WPRS Bulletin XV(3): 1–3.Google Scholar
  38. Hassan, S.A., 1998. Introduction to standard characteristics of test methods. In: P.T. Haskell and P. McEwen (eds), Ecotoxicology: Pesticides and beneficial organisms. Kluwer Academic Publishers, Dordrecht, NL. pp. 55–68.Google Scholar
  39. Head, G., C.R. Brown, M.E. Groth and J.J. Duan, 2001. Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessment. Entomol. Exp. Appl. 99: 37–45.Google Scholar
  40. Hilbeck, A., W.J. Moar, M. Pusztai-Carey, A. Filippini and F. Bigler, 1998a. Toxicity of Bacillus thuringiensis Cry1Ab toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27: 1255–1263.Google Scholar
  41. Hilbeck, A., M. Baumgartner, P.M. Fried and F. Bigler, 1998b. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27: 480–487.Google Scholar
  42. Hodek, I., 1996. Food Relationships In: I. Hodek and A. Honek (eds), Ecology of Coccinellidae. Kluwer Academic Publisher, London, UK. pp 143–238.Google Scholar
  43. Holopainen, J.K. and J. Helenius, 1992. Gut content of ground beetles (Col., Carabidae), and activity of these and other epigeal predators during an outbreak of Rhopalosiphum padi (Hom., Aphidae). Acta Agr. Scand. B-S. P. 42: 57–61.Google Scholar
  44. Hurle, K., M. Lechner and K. König, 1996. Mais: Unkräuter – Schädlinge – Krankheiten. Verlag Th. Mann, Gelsenkirchen, Germany. pp. 1–116.Google Scholar
  45. ISB, 2002. Information systems for Biotechnology. Field test releases in the US. Available free at Scholar
  46. James, C., 2002. Global status of commercialised transgenic crops: 2002. ISAAA Briefs, no. 27. EuroCenter, Northwich, UK. pp. 1–24.Google Scholar
  47. Jansens S., A. van Vliet, C. Dickburt, L.P.C. Buysse, B. Saey, A. De Wulf, V. Gossele, A.G.E. Paez and M. Peferoen, 1997. Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage. Crop Sci. 37: 1616–1624.Google Scholar
  48. Jouanin, L., M. Bonade-Bottino, C. Girard, G. Morrot and M. Giband, 1998. Transgenic plants for insect resistance. Plant Sci. 131: 1–11.Google Scholar
  49. Katz, P., 1993. Analyse der Populationsdynamik von Maisblattläuse. Ph.D Thesis, Institut für Phytomedizin der Universität Hohenheim, Germany. 151 pp.Google Scholar
  50. Kiss, J., F. Szentkirályi, F. Tóth, Á. Szénási, F. Kádár, K. Árpás, D. Szekeres and C.R. Edwards, 2003. Bt-corn: Impact on non-target and adjusting to local IPM systems. In: T. Lelley, E. Balázs and M. Tepfer (eds), Ecological Impact of GMO Dissemination in Agro-Ecosystems, Facultas Verlags-und Buchhandels AG, Austria. pp. 157–172.Google Scholar
  51. Kokubu, H., 1986. Migration rates, in situ reproduction, and flight characteristics of aphidophagous insects (Chrysopidae, Coccinellidae, Syrphidae) in corn fields. Ph.D. Thesis, Institute of Zoology, University of Basel, Switzerland. 184 pp.Google Scholar
  52. Kot, J. and T. Bilewicz-Pawinska, 1987. From studies of maize entomofauna in Warsaw region. In: F. Szentkiralyi (ed), International Symposium on Maize Arthropods, Plant protection Institute of the Hungarian Academy of Sciences, Gödöllö, Hungary. p. 34.Google Scholar
  53. Kulp, D., M. Formann, M. Hommes and H.P. Plate, 1989. Die räuberische Gallmücke Aphidolotes aphidimyza (Rondani) (Diptera: Cecidomyiidae): Ein bedeutender Blattlausprädator-Nachschlagewerk zur Systematik, Verbreitung, Biologie, Zucht und Anwendung. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft, Heft 250, Berlin. 126 pp.Google Scholar
  54. Limburg, D.D. and J.A. Rosenheim, 2001. Extrafloral nectar consumption and its influence on survival and development of an omnivorous predator, larval Chrysoperla plorabunda (Neuroptera: Chrysopidae). Environ. Entomol. 30: 595–604.Google Scholar
  55. Longauerova, J., 1987. Some problems with arthropods on maize in Czechoslovakia. In: F. Szentkiralyi (ed), International Symposium on Maize Arthropods, Plant protection Institute of the Hungarian Academy of Sciences, Gödöllö, Hungary. p. 36.Google Scholar
  56. Lövei, G. L. and F. Szentkirályi, 1984. Carabids climbing maize plants. Appl. J. Entomol. 97: 107–110.Google Scholar
  57. Lozzia, G.C., C. Furlanis, B. Manachini and I.E. Rigamonti, 1998. Effects of Bt corn on Rhopalosiphum padi L. (Rhynchota Aphididae) and on its predator Chrysoperla carnea Stephen (Neuroptera Chrysopidae). Boll. Zool. agr. Bachic. 30: 153–164.Google Scholar
  58. Marvier, M., 2002. Improving risk assessment for nontarget safety of transgneic crops. Ecol. Appl. 12(4): 1119–1124.Google Scholar
  59. Meier, M.S. and A. Hilbeck, 2001. Influence of transgenic Bacillus thuringiensis corn-fed prey and prey preference of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Basic Appl. Ecol. 2: 35–44.Google Scholar
  60. Morton, R.L., H.E. Schroeder, K.S. Bateman, M.J. Chrispeels, E. Armstrong and T.J.V. Higgins, 2000. Bean alpha-amylase anhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. P. Natl. Acad. Sci. 97: 3820–3825.Google Scholar
  61. Nap, J-P., P.L.J. Metz, M. Escaler and A.J. Conner, 2003. The release of genetically modified crops into the environment. Part I: Overview of current status and regulations. Plant J. 33: 1–18.Google Scholar
  62. Narváez-Vasquez, J., M.L. Orozco-Cardenas and C.A. Ryan, 1992. Differential expression of a chimeric CaMV-tomato proteinase inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Mol. Biol. 20: 1149–1157.Google Scholar
  63. NAS (National Academy of Sciences), 2000. Genetically modified pest-protected plants: Science and regulation. Washington, DC: National Academy Press. Available free at http://www.napedu/books/0309069300/html/.Google Scholar
  64. NAS (National Academy of Sciences), 2002. Environmental effects of transgenic plants: The scope and adequacy of regulation. Washington, DC: National Academy Press. Available free at Scholar
  65. Orr, D.B. and D.A. Landis, 1997. Oviposition of European corn borer (Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. J. Econ. Entomol. 90: 905–909.Google Scholar
  66. Overmeer, W.P.J. and A.Q. van Zon, 1982. A standardised method for testing side-effects of pesticides on the predacious mite Amplyseius potentillae German (Acarina: Phytosdiidae). Entomophaga 27: 357–364.Google Scholar
  67. Perry, J.N., P. Rothery, S.J. Clark, M.S. Heard and C. Hawes, 2003. Design, analysis, and statistical power of the Farm-Scale Evaluations of genetically modified herbizide-tolerant crops. J. Appl. Eco. 40: 17–31.Google Scholar
  68. Pilcher, C.D., J.J. Obrycki, M.E. Rice and L.C. Lewis, 1997. Preimaginal development, survival and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environ. Entomol. 26: 446–454.Google Scholar
  69. Plewka, T. and M. Pankanin-Franczyk, 1989. Aphids and aphidophages on maize in central Poland. Acta Phytopathol. Acad. Sci. Hungar. 24: 169–171.Google Scholar
  70. Polgar, L., 1984. The role of aphid parasites (Hymenoptera: Aphidiidae) in the maize ecosystem. Acta Phytopathol. Acad. Sci. Hungar. 17: 139–145.Google Scholar
  71. Rao, K.V., K.S. Rathore, T.K. Hodges, X. Fu, E. Stoger, D. Sudhakar, S. Williams, P. Christou, M. Bharathi, D.P. Bown, K.S. Powell, J. Spence, A.M.R. Gatehouse and J.A. Gatehouse, 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J. 15: 469–477.Google Scholar
  72. Raps, A., J. Kehr, P. Gugerli, W.J. Moar and F. Bigler, 2001. Detection of Cry 1Ab in phloem sap of Bacillus thuringiensis corn and in the selected herbivores Rhopalosiphum padi (Homoptera: Aphidae) and Spodoptera littoralis (Lepidoptera: Noctuidae). Mol. Ecol. 10: 525–533.Google Scholar
  73. Reh, P., 1980 Vergleigende Untersuchungen über die jahreszeitlichen Veränderung der Fauna von Maisbeständen in der Oberrheinischen Riefebene und der Filderebene, unter besonderer Berücksichtigung räuberichen Gegenspieler des Maiszünsler Ostrinia nubilalis. Diplomarbeit, Hohenheim, Germany.Google Scholar
  74. Reh, P., 1985. Untersuchungen zur Populationsdynamik des Maiszünslers Ostrinia nubilalis Hbn. Ph.D. Thesis, Institut für Phytomedizin der Universität Hohenheim, Germany. 131 pp.Google Scholar
  75. Romeis, J., A. Dutton and F. Bigler, 2004. Bacillus thuringiensis toxin (Cry1Ab) has no direct toxic effect on larvae of the green lacewing Chrysoperla carnea. J. Insect Physiol. (in press).Google Scholar
  76. Saeglist, C. and D. Baetsch, 2003. Regulatory and associated political issues with respect to Bt transgenic maize in the European union. J. Invertebr. Pathol. 83: 107–109.Google Scholar
  77. Schmitz, G. and D. Bartsch, 2001. Biozoenotische Untersuchungen in Maisfeldern bei Bonn und Aachen. Mitteilungen der Deutschen Gesellschaft für allgemeine und Angewandte Entomologie 13: 615–618.Google Scholar
  78. Schmitz, G., D. Bartsch and P. Pretscher, 2003. Selection of relevant non-target herbivores for monitoring the environmental effects of Bt-maize pollen. Environ. Biosafety Res. 2: 117–132.Google Scholar
  79. Schuler, T.H., G.M. Poppy, B.R. Kerry and I. Denholm, 1998. Insect-resistant transgenic plants. Trends Biotech. 16: 168–175.Google Scholar
  80. Schuler, T.H., G.M. Poppy, B.R. Kerry and I. Denholm, 1999. Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Trends in Biotechnology 12: 210–216.Google Scholar
  81. Sheldon, J.K. and E.G. MacLeod, 1971. Studies on the biology of the Chrysopidae II. The feeding behavior of the adult of Chrysoperla carnea (Neuroptera). Psyche 78: 107–121.Google Scholar
  82. Steidl, R.J., J.P. Hayes and E. Schauber, 1997. Statistical power analysis in wildlife research. J. Wildlife Manage. 61: 270–279.Google Scholar
  83. Sutherland, J.P., M.S. Sullivan and G.M. Poppy, 1999. The influence of floral character on the foraging behaviour of the hoverfly, Episyrphus balteatus. Entomol. Exp. Appl. 93: 157–164.Google Scholar
  84. Triltsh, H., 1999. Food remains in the guts of Coccinella septempunctata (Coleoptera: Coccinellidae) adults and larvae. Europ. J. Entomol. 96: 355–364.Google Scholar
  85. Visnyovszky, E. and V. Rácz, 1989. Investigation of Syrphids in maize stands. Acta Phytopathol. Entomol. Hungar. 24: 219–223.Google Scholar
  86. Wold, S.J., E.C. Burkness, W.D. Hutchison and R.C. Venette, 2001. In-field monitoring of beneficial insect populations in transgenic corn expressing a Bacillus thuringiensis toxin. J. Entomol. Sci. 36: 177–187.Google Scholar
  87. Zwahlen, C., W. Nentwig, F. Bigler and A. Hilbeck, 2000. Tritrophic interactions of transgenic Bacillus thuringiensis corn-fed Anaphothrips obscurus (Thysanoptera: Thripidae) with the predator Orius majusculus (Heteroptera: Anthocoridae). Environ. Entomol. 29: 846–850.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Anna Dutton
    • 1
  • Jörg Romeis
    • 1
  • Franz Bigler
    • 1
  1. 1.Swiss Federal Research Station for Agroecology and Agriculture (FAL), Reckenholzstr. 191ZurichSwitzerland

Personalised recommendations