Cellular and Molecular Neurobiology

, Volume 17, Issue 2, pp 157–169

At Least Three Neurotransmitter Systems Mediate a Stress-Induced Increase in c-fos mRNA in Different Rat Brain Areas

  • E. Bozas
  • N. Tritos
  • H. Phillipidis
  • F. Stylianopoulou
Article

Abstract

1. Protooncogene c-fos mRNA levels were determined in the rat cerebral cortex, hippocampus, and cerebellum after exposure to a combined forced swimming and confinement stress. The stress resulted in an increase in c-fos mRNA levels in all three brain areas.

2. In an effort to elucidate the neurotransmitter systems involved in this stress-induced increase, animals were injected, prior to exposure to the stress, with either diazepam, MK-801, or propranolol.

3. In both the cerebral cortex and the hippocampus the stress-induced increase in c-fos mRNA was inhibited by MK-801, suggesting that it is mediated via NMDA receptors. In the hippocampus, propranolol had a similar effect, indicating that β-adrenergic receptors are also involved in the stress-induced increase in c-fos mRNA.

4. On the other hand, the increase in c-fos mRNA produced by the stress of the injection was inhibited in the cerebral cortex by diazepam or propranolol and in the hippocampus only by diazepam. Furthermore, administration of MK-801 resulted in an increase in c-fos mRNA in the hippocampus of the nonstressed animals. In the cerebellum no one of the three drugs employed affected c-fos mRNA levels in either stressed or nonstressed animals.

5. Our results thus show that various forms of stress activate, in different brain areas, neurons with either NMDA, β-adrenergic, and/or GABA-A receptors.

c-fos stress protooncogene gene transcription mRNA NMDA receptors β-adrenergic receptors diazepam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alexis, M. N., Stylianopoulou, F., Kitraki, E., and Sekeris, C. E. (1983). The distribution and properties of the glucocorticoid receptor from rat brain and pituitary. J. Biol. Chem. 258:4710–4714.Google Scholar
  2. Anohkin, K. V., and Rose, P. R. (1991). Learning-induced increase of immediate early gene messenger RNA in the chick forebrain. Eur. J. Neurosci. 3:162–167.Google Scholar
  3. Autelitano, D. J. (1994). Rapid induction of c-fos and AP-1 modulate corticotroph responsiveness to glucocorticoids. Neuroendocrinology 60(S1):14 (S10.3).Google Scholar
  4. Bing, G., Stone, E. A., Zhang, Y., and Filer, D. (1992). Immunohistochemical studies of noradrenergic-induced expression of c-Fos in the rat CNS. Brain Res. 592:57–62.Google Scholar
  5. Ceccateli, S., Villar, M. J., Goldstein, M., and Hokfelt, T. (1989). Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc. Natl. Acad. Sci. USA 86:9569–9573.Google Scholar
  6. Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.Google Scholar
  7. Chrousos, G. P., and Gold, P. W. (1992). The concepts of stress and stress system disorders. JAMA 267:1244–1252.Google Scholar
  8. Curran, T., and Franza, B. R., Jr. (1988). Fos and Jun: The AP-1 connection. Cell 55:395–397.Google Scholar
  9. Curran, T., Miller, A. D., Zokas, L., and Verma, I. M. (1984). Viral and cellular Fos proteins. A comparative analysis. Cell 36:259–268.Google Scholar
  10. Dragunow, M., and Faull, R. L. M. (1990). MK-801 induces c-Fos protein in thalamic and neocortical neurons of rat brain. Neurosci. Lett. 111:39–45.Google Scholar
  11. Dragunow, M., and Robertson, H. A. (1987). Generalized seizures induce c-Fos protein(s) in mammalian neurons. Neurosci. Lett. 82:157–161.Google Scholar
  12. Dragunow, M., and Robertson, H. A. (1988a). Localization and induction of c-Fos protein-like immunoreactive material in the nuclei of adult mammalian neurons. Brain Res. 440:252–260.Google Scholar
  13. Dragunow, M., and Robertson, H. A. (1988b). Brain injury induces c-Fos protein(s) in nerve and glial-like cells in adult mammalian brain. Brain Res. 445:295–299.Google Scholar
  14. Dragunow, M., Abraham, W. C., Goulding, M., Mason, S. E., Robertson, H. A., and Faull, R. L. M. (1989). Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neurosci. Lett. 101:274–280.Google Scholar
  15. Ehret, G., and Fischer, R. (1991). Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res. 567:350–354.Google Scholar
  16. Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.Google Scholar
  17. Fort, P., Marty, L., Piechaczyk, M., El Sabrouty, S., Dani, C., Jeanteur, P., and Blanchard, J. M. (1985). Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acid Res. 13:1431–1442.Google Scholar
  18. Gass, P., Herdegen, T., Bravo, R., and Kiessling, M. (1993). Induction and suppression of immediate early genes in specific rat brain regions by the non-competitive N-methyl-D-aspartate receptor antagonist MK-801. Neuroscience 53:749–758.Google Scholar
  19. Ghez, C. (1991). The cerebellum. Principles of Neural Science, 3rd ed. (E. R. Kandel, J. H. Schwartz and T. M. Jessell, Eds.), Elsevier, New York, pp. 626–646.Google Scholar
  20. Greenberg, M. E., Greene, L. A., and Ziff, E. B. (1985). Nerve growth factor and epidermal growth factor induce rapid transient changes in protooncogene transcription in PC12 cells. J. Biol. Chem. 260:14101–14110.Google Scholar
  21. Gubits, R. M., Smith, T. M. Fairhurst, J. L., and Yu, H. (1989). Adrenergic receptors mediate changes in c-fos mRNA levels in brain. Mol. Brain Res. 6:30–45.Google Scholar
  22. Herrera, D. G., and Robertson, H. A. (1990). N-Methyl-D-aspartate receptors mediate activation of the c-fos protooncogene in a model of brain injury. Neuroscience 35:273–281.Google Scholar
  23. Honkaniemi, J. (1992). Colocalization of peptide-and tyrosine hydroxylase-like immunoreactivities with Fos-immunoreactive neurons in rat central amygdaloid nucleus after immobilization stress. Brain Res. 598:107–113.Google Scholar
  24. Hughes, P., Dragunow, M., Beilharz, E., Lawlor, P., and Gluckman, P. (1993). MK-80t induces immediate-early gene proteins and BDNF mRNA in rat cerebrocortical neurons. Neuroreport 4:183–186.Google Scholar
  25. Kitraki, E., Philippidis, H., and Stylianopoulou, F. (1992). Hormonal control of insulin-like growth factor-II gene expression in the rat liver. J. Mol. Endocrinol. 9:131–136.Google Scholar
  26. Le, F., Wilce, P. A., Hume, D. A., and Shanley, B. C. (1992). Involvement of γ-aminobutyric acid and N-methyl-D-aspartate receptors in the inhibitory effect of ethanol on pentylenetetrazole-induced c-fos expression in rat brain. J. Neurochem. 59:1309–1315.Google Scholar
  27. McElroy, J. F., and Meyer, J. S. (1983). Relationship between benzodiazepine receptors and the attenuation of stress-induced corticosterone elevations in rats. Neuroscience 9:413.Google Scholar
  28. Melton, D., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984). Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.Google Scholar
  29. Mocchetti, I., De Bernardi, M. A., Skekely, A. M., Alho, H., Brooker, G., and Costa, E. (1989). Regulation of nerve growth factor biosynthesis by β-adrenergic receptor activation in astrocytoma cells: A potential role of c-Fos protein. Proc. Natl. Acad. Sci. USA 86:3891–3895.Google Scholar
  30. Morgan, J. I., and Curran, T. (1991). Stimulus-transcription coupling in the nervous system: Involvement of the inducible protooncogeneses fos and jun. Annu. Rev. Neurosci. 14:421–451.Google Scholar
  31. Morgan, J. I., Cohen, D. R., Hempstead, J. L., and Curran, T. (1987). Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197.Google Scholar
  32. Nehls, D. G., Park, C. K., MacCormack, A. G., and McCulloch, J. (1990). The effects of N-methyl-D-aspartate receptor blockade with MK-801 upon the relationship between cerebral blood flow and glucose utilisation. Brain Res. 511:271–279.Google Scholar
  33. Olney, J. W., Labruyere, J., and Price, M. T. (1989). Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244:1360–1362.Google Scholar
  34. Pearse, D., and Yamamoto, K. R. (1993). Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science 259:1161–1165.Google Scholar
  35. Pechnick, R. N., and Hiramatsu, M. (1994). The effects of MK-801 on body temperature and behavior in the rat; Cross-sensitization and cross-tolerance with phencyclidine. Eur. J. Pharmacol. 252:35–42.Google Scholar
  36. Sagar, S. M., and Sharp, F. R. (1990). Light induces a Fos-like nuclear antigen in retinal neurons. Mol. Brain Res. 7:17–21.Google Scholar
  37. Sagar, S. M., Sharp, F. R., and Curran, T. (1988). Expression of c-fos protein in brain: Metabolic mapping at the cellular level. Science 240:1328–1331.Google Scholar
  38. Sallaz, M., and Jourdan, F. (1993). C-fos expression and 2-deoxyglucose uptake in the olfactory bulb of odour-stimulated awake rate. NeuroReport 4:55–58.Google Scholar
  39. Sapolsky, R. M., Krey, L. C., and McEwen, B. S. (1984). Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc. Natl. Acad. Sci. USA 81:6174–6177.Google Scholar
  40. Sapolsky, R. M., Krey, L. C., and McEwen, B. S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging. J. Neurosci. 5:1221–1226.Google Scholar
  41. Schreiber, S. S., Tocco, G., Shors, T. J., and Thompson, R. F. (1991). Activation of immediate early genes after acute stress. NeuroReport 2:17–20.Google Scholar
  42. Sheng, M., and Greenberg, M. E. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485.Google Scholar
  43. Sheng, M., McFadden, G., and Greenberg, M. E. (1990). Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571–582.Google Scholar
  44. Uemura, Y., Kowall, N. M., and Beal, M. F. (1991). Global ischemia induces NMDA receptor-mediated c-fos expression in neurons resistant to injury in gerbil hippocampus. Brain Res. 542:343–347.Google Scholar
  45. Wessel, T. C., Jon, T. H., and Volpe, B. T. (1991). In situ hybridization analysis of c-fos and c-jun expression in the rat brain following transient forebrain ischemia. Brain Res. 567:231–240.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • E. Bozas
    • 1
  • N. Tritos
    • 1
  • H. Phillipidis
    • 1
  • F. Stylianopoulou
    • 1
  1. 1.Laboratory of Biology-Biochemistry, Faculty of NursingUniversity of AthensAthensGreece

Personalised recommendations