Journal of Mammary Gland Biology and Neoplasia

, Volume 2, Issue 4, pp 393–402 | Cite as

Elucidation of a Role for Stromal Steroid Hormone Receptors in Mammary Gland Growth and Development Using Tissue Recombinants

  • G. R. Cunha
  • P. Young
  • Y. K. Hom
  • P. S. Cooke
  • J. A. Taylor
  • D. B. Lubahn


The use of tissue recombinants in conjunction with steroid receptor deficient mice is described as a tool to dissect the complex paracrine pathways of sex-hormone-regulated epithelial growth and ductal morphogenesis in the mammary gland and other hormone target organs. The basic methodology involves the construction of the four possible tissue recombinants composed of epithelium (E)6 and stroma (S) from wild-type (wt) and knock-out (KO) mice: wt-S + wt-S, wt-S + KO-E, KO-S + KO-E, and KO-S + wt-E. All tissue recombinants are grown as subrenal capsule grafts in nude mice. Following appropriate hormonal challenge epithelial growth can be studied in the four types of tissue recombinants. Such studies using estrogen receptor, androgen receptor and progesterone receptor knockout mice demonstrate that epithelial steroid receptors are neither necessary nor sufficient for hormonal regulation of epithelial proliferation. Instead, hormonal regulation of epithelial proliferation is a paracrine event mediated by hormone-receptor-positive stromal cells.

Epithelium stroma mesenchyme estrogen receptor androgen receptor ductal morphogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ohno (1979). Major Sex Determining Genes, Springer-Verlag, New York.Google Scholar
  2. 2.
    D. B. Lubahn, D. R. Joseph, P. M. Sullivan, H. F. Willard, F. S. French and E. M. Wilson (1988). Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240:327–330.PubMedGoogle Scholar
  3. 3.
    C. S. Chang, J. Kokontis, and S. T. Liao (1988). Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240:324–326.PubMedGoogle Scholar
  4. 4.
    F. S. French, D. B. Lubahn, T. R. Brown, J. A. Simental, C. A. Quigley, W. G. Yarbrough, J. A. Tan, M. Sar, D. R. Joseph, and B. A. Evans (1990). Molecular basis of androgen insensitivity. Rec. Prog. Horm. Res. 46:1–38.Google Scholar
  5. 5.
    W. W. He, C. Y.-F. Young, and D. J. Tindall (1990). The molecular basis of the mouse testicular feminization (Tfm) mutation: A frame-shift mutation. Endocrinol. Suppl. 126:240.Google Scholar
  6. 6.
    D. B. Lubahn, J. S. Moyer, T. S. Golding, J. F. Couse, K. S. Korach, and O. Smithies (1993). Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. U.S.A. 90:11162–11166.PubMedGoogle Scholar
  7. 7.
    J. P. Lydon, F. J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery, G. Shyamala, O. M. Conneely, and B. W. O'Malley (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Devel. 9:2266–2278.PubMedGoogle Scholar
  8. 8.
    K. Korach (1994). Insights from the study of animals lacking functional estrogen receptor. Science 266:1524–1527.PubMedGoogle Scholar
  9. 9.
    K. Kratochwil and P. Schwartz (1976). Tissue interaction in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue of testosterone. Proc. Natl. Acad. Sci. U.S.A. 73:4041–4044.PubMedGoogle Scholar
  10. 10.
    B. Heuberger, I. Fitzka, G. Wasner, and K. Kratochwil (1982). Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. Proc. Natl. Acad. Sci. U.S.A. 79:2957–2961.PubMedGoogle Scholar
  11. 11.
    H. Durnberger, B. Heuberger, P. Schwartz, G. Wasner, and K. Kratochwil (1978). Mesenchyme-mediated effect of testosterone on embryonic mammary epithelium. Cancer Res. 38:4066–4070.PubMedGoogle Scholar
  12. 12.
    H. Dürnberger and K. Kratochwil (1980). Specificity of tissue interaction and origin of mesenchymal cells in the androgen response of the embryonic mammary gland. Cell 19:465–471.PubMedGoogle Scholar
  13. 13.
    G. Wasner, I. Hennermann, and K. Kratochwil (1983). Ontogeny of mesenchymal androgen receptors in the embryonic mouse mammary gland. Endocrinology 113:1771–1780.PubMedGoogle Scholar
  14. 14.
    K. Kratochwil (1987). Tissue combination and organ culture studies in the development of the embryonic mammary gland. In R. B. L. Gwatkin (ed.), Developmental Biology: A Comprehensive Synthesis, Plenum Press, New York, pp. 315–334.Google Scholar
  15. 15.
    G. R. Cunha, P. Young, K. Christov, R. Guzman, S. Nandi, F. Talamantes, and G. Thordarson (1995). Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat. 152:195–204.PubMedGoogle Scholar
  16. 16.
    G. R. Cunha, A. A. Donjacour, P. S. Cooke, S. Mee, R. M. Bigsby, S. J. Higgins, and Y. Sugimura (1987). The endocrinology and developmental biology of the prostate. Endocrine Rev. 8:338–363.Google Scholar
  17. 17.
    G. R. Cunha and P. Young (1991). Inability of Tfm (testicular feminization) epithelial cells to express androgen-dependent seminal vesicle secretory proteins in chimeric tissue recombinants. Endocrinology 128:3293–3298.PubMedGoogle Scholar
  18. 18.
    G. R. Cunha, E. T. Alarid, T. Turner, A. A. Donjacour, E. L. Boutin, and B. A. Foster (1992). Normal and abnormal development of the male urogenital tract: Role of androgens, mesenchymal-epithelial interactions and growth factors. J. Androl. 13:465–475.PubMedGoogle Scholar
  19. 19.
    J. H. Clark and E. J. Peck (1979). Female Sex Steroids: Receptors and Function. Springer-Verlag, New York.Google Scholar
  20. 20.
    S. A. McCormack and S. R. Glasser (1980). Differential response of individual uterine cell types from immature rats treated with estradiol. Endocrinology 106:1634–1649.PubMedGoogle Scholar
  21. 21.
    W. Stumpf and M. Sar (1976). Autoradiographic localization of estrogen, androgen, progestin, and glucocorticosteroid in “target tissues” and “non-target tissues”. In J. Pasqualini (ed.), Receptors and Mechanism of Action of Steroid Hormones, Marcel Dekker Inc., New York, pp. 41–84.Google Scholar
  22. 22.
    M. C. McClellan, N. B. West, D. E. Tacha, G. L. Greene, and R. M. Brenner (1984). Immunocytochemical localization of estrogen receptors in the macaque reproductive tract with monoclonal antiestrophilins. Endocrinology 114:2002–2014.PubMedGoogle Scholar
  23. 23.
    S. Z. Haslam and K. A. Nummy (1992). The ontogeny and cellular distribution of estrogen receptors in normal mouse mammary gland. J. Steroid Biochem. Mol. Biol. 42:589–595.PubMedGoogle Scholar
  24. 24.
    M. Edery, M. McGrath, L. Larson, and S. Nandi (1984). Correlation between in vitro growth and regulation of estrogen and progesterone receptors in rat mammary epithelial cells. Endocrinology 115:1691–1697.PubMedGoogle Scholar
  25. 25.
    S. Z. Haslam and G. Shyamala, (1981). Relative distribution of estrogen and progesterone receptors among the epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinology 108:825–830.PubMedGoogle Scholar
  26. 26.
    G. R. Cunha, J. M. Shannon, K. D. Vanderslice, M. Sekkingstad, and S. J. Robboy (1982). Autoradiographic analysis of nuclear estrogen binding sites during postnatal development of the genital tract of female mice. J. Steroid Biochem. 17:281–286.PubMedGoogle Scholar
  27. 27.
    R. M. Bigsby and G. R. Cunha (1986). Estrogen stimulation of deoxyribonucleic acid synthesis in uterine epithelial cells which lack estrogen receptors. Endocrinology 119:390–396.PubMedGoogle Scholar
  28. 28.
    S. Yamashita, R. R. Newbold, J. A. McLachlan, and K. S. Korach (1990). The role of the estrogen receptor in uterine epithelial proliferation and cytodifferentiation in neonatal mice. Endocrinology 127:2456–2463.PubMedGoogle Scholar
  29. 29.
    M. C. McClellan, S. Rankin, N. B. West, and R. M. Brenner (1990). Estrogen receptors, progesterone receptors and DNA synthesis in the macaque endometrium during the luteal-follicular transition. J. Steroid Biochem. Mol. Biol. 37:631–641.PubMedGoogle Scholar
  30. 30.
    W. Imagawa, G. K. Bandyopadhyay, and S. Nandi (1990). Regulation of mammary epithelial cell growth in mice and rats. Endocrine Rev. 11: 494–523.Google Scholar
  31. 31.
    V. Casimiri, N. C. Rath, H. Parvez, and A. Psychoyos (1980). Effect of sex steroids on rat endometrial epithelium and stroma cultured separately. J. Steroid Biochem. 12:293–298.PubMedGoogle Scholar
  32. 32.
    T. Iguchi, F. D. A. Uchima, P. L. Ostrander, and H. A. Bern (1983). Growth of normal mouse vaginal epithelial cells in and on collagen gels. Proc. Natl. Acad. Sci. U.S.A. 80:3743–3747.PubMedGoogle Scholar
  33. 33.
    T. Iguchi, F.-D. A. Uchima, P. L. Ostrander, S. T. Hamamoto, and H. A. Bern (1985). Proliferation of normal mouse uterine luminal epithelial cells in serum-free collagen gel culture. Proc. Jpn. Acad. 61:292–295.Google Scholar
  34. 34.
    J. Julian, D. D. Carson, and S. R. Glasser (1992). Polarized rat uterine epithelium in vitro: Responses to estrogen in defined medium. Endocrinology 130:68–78.PubMedGoogle Scholar
  35. 35.
    P. S. Cooke, F.-D. A. Uchima, D. K. Fujii, H. A. Bern, and G. R. Cunha (1986). Restoration of normal morphology and estrogen responsiveness in cultured vaginal and uterine epithelia transplanted with stroma. Proc. Natl. Acad. Sci. U.S.A. 83:2109–2113.PubMedGoogle Scholar
  36. 36.
    T. Inaba, W. G. Wiest, R. C. Strickler, and J. Mori (1988). Augmentation of the response of mouse uterine epithelial cells to estradiol by uterine stroma. Endocrinology 123:1253–1258.PubMedGoogle Scholar
  37. 37.
    C. M. McGrath (1983). Augmentation of response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res. 43:1355–1360.PubMedGoogle Scholar
  38. 38.
    S. Z. Haslam (1986). Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res. 45:310–316.Google Scholar
  39. 39.
    P. Cooke, D. Buchanan, P. Young, T. Setiawan, J. Brody, K. Korach, J. Taylor, D. Lubahn, and G. Cunha (1997). Stromal estrogen receptors (ER) mediate mitogenic effects of estradiol on uterine epithelium. Proc. Natl. Acad. Sci. U.S.A. 94:6535–6540.PubMedGoogle Scholar
  40. 40.
    K. B. DeOme, L. J. Faulkin, Jr., and H. A. Bern (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19:515–520.PubMedGoogle Scholar
  41. 41.
    R. C. Humphreys, J. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Use of PRKO mice to study the role of progesterone in mammary gland development. J. Mam. Gland Biol. Neoplasia 2(4):343–354.Google Scholar
  42. 42.
    C. W. Daniel, J. M. Shannon, and G. R. Cunha (1983). Transplanted mammary epithelium grows in association with host stroma: aging of serially transplanted mammary gland is intrinsic to epithelial cells. Mech. Aging Devel. 23:259–264.Google Scholar
  43. 43.
    L. Martin, R. Das, and C. Finn (1973). The inhibition by progesterone of uterine epithelial proliferation in the mouse. J. Endocrinol 57:549.PubMedGoogle Scholar
  44. 44.
    A. A. Donjacour, and G. R. Cunha (1993). Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 131:2342–2350.Google Scholar
  45. 45.
    T. Setiawan, D. Buchanan, J. Taylor, P. Young, D. Lubahn, G. Cunha, and P. Cooke (1997). Role of stromal and epithelial estrogen receptors (ER) in uterine epithelial secretory protein production. Biol. Reprod. 56(Suppl.1):83.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • G. R. Cunha
    • 1
  • P. Young
    • 1
  • Y. K. Hom
    • 1
  • P. S. Cooke
    • 2
  • J. A. Taylor
    • 3
  • D. B. Lubahn
    • 3
  1. 1.Anatomy Department and Reproductive Endocrinology CenterUniversity of CaliforniaSan Francisco
  2. 2.Department of Veterinary BiosciencesUniversity of IllinoisUrbana
  3. 3.Departments of Biochemistry and Child HealthUniversity of MissouriColumbia

Personalised recommendations