The Ramanujan Journal

, Volume 7, Issue 1–3, pp 193–222 | Cite as

Modular Transformations of Ramanujan's Fifth and Seventh Order Mock Theta Functions

  • Basil Gordon
  • Richard J. Mcintosh


In his last letter to Hardy, Ramanujan defined 17 functions F(q), where |q| < 1. He called them mock theta functions, because as q radially approaches any point eir (r rational), there is a theta function Fr(q) with F(q) − Fr(q) = O(1). In this paper we obtain the transformations of Ramanujan's fifth and seventh order mock theta functions under the modular group generators τ → τ + 1 and τ → −1/τ, where q = eπiτ. The transformation formulas are more complex than those of ordinary theta functions. A definition of the order of a mock theta function is also given.

mock theta function modular form Mordell integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. Andrews, “The fifth and seventh order mock theta functions,” Trans. Amer. Soc. 293 (1986), 113-134.Google Scholar
  2. 2.
    G.E. Andrews, “Mock theta functions,” Proc. Sympos. Pure Math. 49(2) (1989), 283-298.Google Scholar
  3. 3.
    G.E. Andrews and F.G. Garvan, “Ramanujan's “lost” notebook VI: The mock theta conjectures,” Adv. in Math. 73 (1989), 242-255.Google Scholar
  4. 4.
    G.E. Andrews and D. Hickerson, “Ramanujan's “lost” notebook VII: The sixth order mock theta functions,” Adv. in Math. 89 (1991), 60-105.Google Scholar
  5. 5.
    T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edn., Springer-Verlag, New York, 1990.Google Scholar
  6. 6.
    A.O.L. Atkin and P. Swinnerton-Dyer, “Some properties of partitions,” Proc. London Math. Soc. 4(3) (1954), 84-106.Google Scholar
  7. 7.
    R. Bellman, A Brief Introduction to Theta Functions, Holt, Rinehart and Winston, Inc., New York, 1961.Google Scholar
  8. 8.
    G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.Google Scholar
  9. 9.
    B. Gordon and R.J. McIntosh, “Some eighth order mock theta functions,” J. London Math. Soc. 62(2) (2000), 321-335.Google Scholar
  10. 10.
    D. Hickerson, “A proof of the mock theta conjectures,” Invent. Math. 94 (1988), 639-660.Google Scholar
  11. 11.
    D. Hickerson, “On the seventh order mock theta functions,” Invent. Math. 94 (1988), 661-677.Google Scholar
  12. 12.
    R.J. McIntosh, “Some asymptotic formulae for q-hypergeometric series,” J. London Math. Soc. 51(2) (1995), 120-136.Google Scholar
  13. 13.
    S. Ramanujan, Collected Papers, Cambridge Univ. Press, 1927; reprinted by Chelsea, New York, 1962.Google Scholar
  14. 14.
    S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.Google Scholar
  15. 15.
    B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, New York, 1974.Google Scholar
  16. 16.
    G.N. Watson, “The final problem: An account of the mock theta functions,” J. London Math. Soc. 11 (1936), 55-80.Google Scholar
  17. 17.
    G.N. Watson, “The mock theta functions (2),” Proc. London Math. Soc. 42(2) (1937), 274-304.Google Scholar
  18. 18.
    Whittaker and Watson, Modern Analysis, 4th edn., Cambridge Univ. Press, 1952.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Basil Gordon
    • 1
  • Richard J. Mcintosh
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos Angeles
  2. 2.Department of Mathematics and StatisticsUniversity of ReginaReginaCanada

Personalised recommendations