General Relativity and Gravitation

, Volume 35, Issue 11, pp 1909–1926 | Cite as

Spherical Photon Orbits Around a Kerr Black Hole

  • Edward Teo


Two circular photon orbits are known to exist in the equatorial plane of the Kerr black hole. In this paper, we investigate so-called spherical photon orbits—orbits with constant coordinate radii that are not confined to the equatorial plane. A one-parameter class of solutions is found, which includes the circular orbits as special cases. The properties of these spherical orbits are then analyzed, with the aim of classifying them by qualitative differences in their behavior. Finally, representative orbits from each class are plotted out, including a zero-angular momentum photon orbit and one with non-fixed azimuthal direction.

Kerr black hole light-like geodesics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Martin, J. L. (1996). General Relativity: A First Course for Physicists, Rev. ed., Prentice-Hall, London, pp. 121-123.Google Scholar
  2. [2]
    Luminet, J.-P. (1979). Astron. Astrophys. 75, 228-235.Google Scholar
  3. [3]
    Nemiroff, R. J. (1993). Am. J. Phys. 61, 619-632.Google Scholar
  4. [4]
    Bardeen, J. M., Press, W. H., and Teukolsky, S. A. (1972). Astrophys. J. 178, 347-369.Google Scholar
  5. [5]
    Goldstein, H. (1980). Classical Mechanics, 2nd Edition, Addison-Wesley, Reading, Massachusetts, pp. 457-462.Google Scholar
  6. [6]
    Carter, B. (1968). Phys. Rev. 174, 1559-1571.Google Scholar
  7. [7]
    Wilkins, D. C. (1972). Phys. Rev. D 5, 814-822.Google Scholar
  8. [8]
    Goldstein, H. (1974). Z. Phys. 271, 275-279.Google Scholar
  9. [9]
    Johnston, M. and Ruffini, R. (1974). Phys. Rev. D 10, 2324-2329.Google Scholar
  10. [10]
    Izmailov, S. V. and Levin, E. S. (1979). Sov. Phys. J. 22, 472-478.Google Scholar
  11. [11]
    Izmailov, S. V. and Levin, E. S. (1981). Sov. Phys. J. 23, 645-648.Google Scholar
  12. [12]
    Calvani, M. and de Felice, F. (1978). Gen. Rel. Grav. 9, 889-902.Google Scholar
  13. [13]
    Stuchlik, Z. (1981). Bull. Astron. Inst. Czechosl. 32, 40-52.Google Scholar
  14. [14]
    Calvani, M., de Felice, F., and Nobili, L. (1980). J. Phys. A: Math. Gen. 13, 3213-3219.Google Scholar
  15. [15]
    Schastok, J., Soffel, M., Ruder, H., and Schneider, M. (1987). Am. J. Phys. 55, 336-341.Google Scholar
  16. [16]
    Stewart, J. and Walker, M. (1973). Springer Tracts in Modern Physics, Vol. 69, Springer, Berlin, pp. 69-115.Google Scholar
  17. [17]
    Sharp, N. A. (1979). Gen. Rel. Grav. 10, 657-670.Google Scholar
  18. [18]
    Dymnikova, I. G. (1986). Sov. Phys. Usp. 29, 215-237.Google Scholar
  19. [19]
    Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1993). Numerical Recipes in C, Cambridge University Press, Cambridge, pp. 710-714.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Edward Teo
    • 1
  1. 1.Department of PhysicsNational University of SingaporeSingapore

Personalised recommendations