Autonomous Robots

, Volume 15, Issue 3, pp 299–316 | Cite as

Tele-Presence in Populated Exhibitions Through Web-Operated Mobile Robots

  • Wolfram Burgard
  • Panos Trahanias
  • Dirk Hähnel
  • Mark Moors
  • Dirk Schulz
  • Haris Baltzakis
  • Antonis Argyros
Article

Abstract

This paper presents techniques that facilitate mobile robots to be deployed as interactive agents in populated environments such as museum exhibitions or trade shows. The mobile robots can be tele-operated over the Internet and, this way, provide remote access to distant users. Throughout this paper we describe several key techniques that have been developed in this context. To support safe and reliable robot navigation, techniques for environment mapping, robot localization, obstacle detection and people-tracking have been developed. To support the interaction of both web and on-site visitors with the robot and its environment, appropriate software and hardware interfaces have been employed. By using advanced navigation capabilities and appropriate authoring tools, the time required for installing a robotic tour-guide in a museum or a trade fair has been drastically reduced. The developed robotic systems have been thoroughly tested and validated in the real-world conditions offered in the premises of various sites. Such demonstrations ascertain the functionality of the employed techniques, establish the reliability of the complete systems, and provide useful evidence regarding the acceptance of tele-operated robotic tour-guides by the broader public.

web-operated robots tele-presence in exhibitions navigation competences remote visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arras, K.O. and Vestli, S.J. 1998. Hybrid, high-precision localisation for the mail distributing mobile robot system MOPS. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar
  2. Asoh, H., Hayamizu, S., Hara, I., Motomura, Y., Akaho, S., and Matsui, T. 1997. Socially embedded learning of office-conversant robot jijo-2. In Proceedings of IJCAI-97, IJCAI, Inc. Google Scholar
  3. Baltzakis, H., Argyros, A., and Trahanias, P. 2002. Fusion of range and visual data for the extraction of scene structure information. In Intl. Conf. on Pattern Recognition (ICPR).Google Scholar
  4. Baltzakis, H. and Trahanias, P. 2002. Hybrid mobile robot localization using switching state-space models. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar
  5. Baltzakis, H. and Trahanias, P. 2002. An iterative approach for building feature maps in cyclic environments. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  6. Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., and Thrun, S. 1999. Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 114:(1/2).Google Scholar
  7. Burgard, W., Fox, D., Jans, H., Matenar, C., and Thrun, S. 1999. Sonar-based mapping with mobile robots using EM. In Proc. of the International Conference on Machine Learning (ICML).Google Scholar
  8. Burgard, W. and Schulz, D. 2001. Robust visualization for web-based control of mobile robots. In Robots on the Web: Physical Interaction Through the Internet, K. Goldberg and R. Siegwart (Eds.), MIT-Press.Google Scholar
  9. Castellanos, J.A., Montiel, J.M.M., Neira, J., and Tardós, J.D. 1999. The SPmap: A probabilistic framework for simultaneous localization and map building. In IEEE Transactions on Robotics and Automation, 15(5):948–953.Google Scholar
  10. Cox, I.J. 1993. A review of statistical data association techniques for motion correspondence. International Journal of Computer Vision, 10(1):53–66.Google Scholar
  11. Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B, 39:185–197.Google Scholar
  12. Endres, H., Feiten, W., and Lawitzky, G. 1998. Field test of a navigation system: Autonomous cleaning in supermarkets. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar
  13. Foka, A. and Trahanias, P. 2002. Predictive autonomous robot navigation. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  14. Fox, D., Burgard, W., Kruppa, H., and Thrun, S. 2000. Aprobabilistic approach to collaborative multi-robot localization. Autonomous Robots, 8(3).Google Scholar
  15. Frese, U. and Hirzinger, G. 2001. Simultaneous localization and mapping—a discussion. IJCAI01 Workshop Reasoning with Uncertainty in Robotics, Seatle, Washington, USA.Google Scholar
  16. Goldberg, K., Gentner, S., Sutter, C., Wiegley, J., and Farzin, B. 2002. The mercury project: A feasibility study for online robots. In Beyond Webcams: An Introduction to Online Robots, K. Goldberg and R. Siegwart (Eds.), MIT Press.Google Scholar
  17. Goldberg, K., Santarromana, J., Bekey, G., Gentner, S., Morris, R., Wiegley, J., and Berger, E. 1995. The telegarden. In Proc. of ACM SIGGRAPH.Google Scholar
  18. Gordon, N.J., Salmond, D.J., and Smith, A.F.M. 1993. A novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F, 140(2):107–113.Google Scholar
  19. Gutmann, J.-S. and Konolige, K. 1999. Incremental mapping of large cyclic environments. In Proc. of the IEEE Int. Symp. on Computational Intelligence in Robotics and Automation (CIRA).Google Scholar
  20. Hähnel, D., Burgard, W., and Thrun, S. 2001. Learning compact 3d models of indoor and outdoor environments with a mobile robot. In Fourth European Workshop on Advanced Mobile Robots (EUROBOT'01).Google Scholar
  21. Hähnel, D., Schulz, D., and Burgard, W. 2002. Map building with mobile robots in populated environments. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  22. Hirukawa, H., Hara, I., and Hori, T. 2002. Online robots. In Beyond Webcams: An Introduction to Online Robots, K. Goldberg and R. Siegwart (Eds.), MIT PressGoogle Scholar
  23. King, S. and Weiman, C. 1990. Helpmate autonomous mobile robot navigation system. In Proc. of the SPIE Conference on Mobile Robots, pp. 190–198.Google Scholar
  24. Lu, F. and Milios, E. 1997. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 4:333–349.Google Scholar
  25. Michael, T.S. and Quint, T. 1994. Sphere of influence graphs in general metric spaces. Mathematical and Computer Modelling, 29:45–53.Google Scholar
  26. Moravec, H.P. and Elfes, A.E. 1985. High resolution maps from wide angle sonar. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA), pp. 116–121.Google Scholar
  27. Nourbakhsh, I., Bobenage, J., Grange, S., Lutz, R., Meyer, R., and Soto, A. 1999. An affective mobile educator with a full-time job. Artificial Intelligence, 114:(1/2).Google Scholar
  28. Pitt, M.K. and Shephard, N. 1999. Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94:446.Google Scholar
  29. Rauch, H., Tung, F., and Striebel, C. 1965. Maximum likelihood estimates of linear dynamic systems. American Institute of Aeronautics and Astronautics Journal, 3(8):1445–1450.Google Scholar
  30. Rodriguez-Losada, D., Matia, F., Galan, R., and Jimenez, A. 2002. Blacky, an interactive mobile robot at a trade fair. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar
  31. Schulz, D., Burgard, W., Fox, D., and Cremers, A.B. 2001. Tracking multiple moving objects with a mobile robot. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
  32. Schulz, D., Burgard, W., Fox, D., Thrun, S., and Cremers, A.B. 2000. Web interfaces for mobile robots in public places. IEEE-Magazine on Robotics and Automation.Google Scholar
  33. Simmons, R., Goodwin, R., Haigh, K., Koenig, S., and O'sullivan, J. 1997. A layered architecture for office delivery robots. In Proc. of the First International Conference on Autonomous Agents (Agents).Google Scholar
  34. Smith, R., Self, M., and Cheeseman, P., 1990. Estimating uncertain spatial relationships in robotics. In Autonomous Robot Vehicles, I.J. Cox and G.T. Wilfong (Eds.), Springer-Verlag, pp. 167–193.Google Scholar
  35. Taylor, K. and Trevelyan, J. 1995. A telerobot on the World Wide Web. In Proceedings of the 1995 National Conference of the Australian Robot Association.Google Scholar
  36. Thrun, S. 2001. A probabilistic online mapping algorithm for teams of mobile robots. Journal of Robotics Research, 20(5):335–363.Google Scholar
  37. Thrun, S. Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Hähnel, D., Rosenberg, C., Roy, N., Schulte, J., and Schulz, D. 2000. Probabilistic algorithms and the interactive museum tour-guide robot Minerva. Journal of Robotics Research, 19:11.Google Scholar
  38. Thrun, S., Burgard, W., and Fox, D. 2000. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar
  39. Wang, C.-C. and Thorpe, C. 2002. Simultaneous localization and mapping with detection and tracking of moving objects. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Wolfram Burgard
    • 1
  • Panos Trahanias
    • 2
  • Dirk Hähnel
    • 1
  • Mark Moors
    • 3
  • Dirk Schulz
    • 3
  • Haris Baltzakis
    • 2
  • Antonis Argyros
    • 4
  1. 1.Computer Science DepartmentUniversity of FreiburgGermany
  2. 2.Foundation for Research and Technology—Hellas (FORTH) and University of CreteGreece
  3. 3.Department of Computer ScienceUniversity of BonnGermany
  4. 4.Foundation for Research and Technology—Hellas (FORTH)Greece

Personalised recommendations