Documenta Ophthalmologica

, Volume 107, Issue 2, pp 137–154 | Cite as

Characteristics of braking saccades in congenital nystagmus

  • Jonathan B. Jacobs
  • Louis F. Dell'Osso
  • R. John Leigh


Several of the characteristic waveforms of congenital nystagmus (CN) contain braking saccades. We test the hypothesis that braking (including foveating) saccades, while not always satisfying the standard relationships for saccades, are normal; any differences are due to the presence of high-velocity, slow-phase eye movements. Better measurements of saccadic properties, including position- and velocity-based measures and skewness, can eliminate some of this apparent distortion. We also evoked an analogous effect in normal subjects by use of a ramp-step-ramp stimulus. Finally, we used a model to further demonstrate this distortion in the saccades of normals, deviating from their intended magnitude as a function of the magnitude of the opposing velocity. The saccadic analysis methods developed herein are applicable to all saccades made during ongoing eye movements, whether normal or pathological. The above findings support the hypothesis that the braking saccades integral to many CN waveforms have normal characteristics and are the result of a normal saccadic system's responses to a slow-eye-movement oscillation.

braking saccades congenital nystagmus saccade characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zuber BL, Stark L. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science 1965; 150: 1459-60.Google Scholar
  2. 2.
    Yarbus AL. Eye movements and vision. New York: Plenum Press, 1967: 129-40.Google Scholar
  3. 3.
    Boghen D, Troost BT, Daroff RB, Dell'Osso LF, Birkett JE. Velocity characteristics of normal human saccades. Invest Ophthalmol 1974; 13: 619-23.Google Scholar
  4. 4.
    Bahill AT, Clark MR, Stark L. The main sequence: A tool for studying human eye movements. Math Biosci 1975; 24: 191-204.Google Scholar
  5. 5.
    Abel LA, Hertle RW. Effects of psychoactive drugs on ocular motor behavior. In: Johnston CW, Pirozzolo FJ, eds. Neuropsychology of eye movements. Hillsdale: Lawrence Erlbaum Associates, 1988: 83-114.Google Scholar
  6. 6.
    Zee DS, Optican LM, Cook JD, Robinson DA, Engel WK. Slow saccades in spinocerebellar degeneration. Arch Neurol 1976; 33: 243-51.Google Scholar
  7. 7.
    Abel LA, Dell'Osso LF. Correlations between saccadic latency and velocity in neurologic patients and elderly, but not young, normal subjects [ARVO abstract]. Invest Ophthalmol Vis Sci 1988; 29: 347.Google Scholar
  8. 8.
    Sharpe JA, Zackon DH. Senescent saccades. Acta Oto-Laryngol (Stockholm) 1987; 104: 422-8.Google Scholar
  9. 9.
    Hainline L. Normal lifespan developmental changes in saccadic and pursuit eye movements. In: Johnston CW, Pirozzolo FJ, eds. Neuropsychology of eye movements. Hillsdale: Lawrence Erlbaum Associates, 1988: 31-64.Google Scholar
  10. 10.
    Schmidt D, Dell'Osso LF, Abel LA, Daroff RB. Myasthenia gravis: Dynamic changes in saccadic waveform, gain and velocity. Exp Neurol 1980; 68: 365-77.Google Scholar
  11. 11.
    Schmidt D, Dell'Osso LF, Abel LA, Daroff RB. Myasthenia gravis: Saccadic eye movement waveforms. Exp Neurol 1980; 68: 346-64.Google Scholar
  12. 12.
    Wirtschafter JD, Weingarden AS. Neurophysiology and central pathways in oculomotor control: Physiology and anatomy of saccadic and pursuit movements. In: Johnston CW, Pirozzolo FJ, eds. Neuropsychology of Eye Movements. Hillsdale: Lawrence Erlbaum Associates, 1988: 5-30.Google Scholar
  13. 13.
    Sharpe JA, Troost BT, Dell'Osso LF, Daroff RB. Comparative velocities of different types of fast eye movements in man. Invest Ophthalmol 1975; 14: 689-92.Google Scholar
  14. 14.
    Smit AC, Van Gisbergen JAM, Cools AR. Dynamics of saccadic tracking responses: Effects of task complexity. In: O'Reagan JK, Levy-Schoen A, eds. Eye Movements: From physiology to cognition. North Holland: Elsevier Science Publishers BV, 1987: 7-16.Google Scholar
  15. 15.
    Whittaker SG, Cummings RW. Foveating saccades. Vision Res 1990; 30: 1363-6.Google Scholar
  16. 16.
    Smit AC, Van Gisbergen JAM, Cools AR. A parametric analysis of human saccades in different experimental paradigms. Vision Res 1987; 27: 1745-62.Google Scholar
  17. 17.
    Kenyon EC, Ciuffreda KJ, Stark L. Unequal saccades during vergence. Am J Optom Physiol Optics 1980; 57: 586-94.Google Scholar
  18. 18.
    Jacobs JB, Erchul DM, Dell'Osso LF. Braking saccade generation in congenital nystagmus. ARVO abstracts. Invest Ophthalmol Vis Sci 1996; 37: S277.Google Scholar
  19. 19.
    Jacobs JB, Dell'Osso LF, Erchul DM. Generation of braking saccades in congenital nystagmus. Neuro-Ophthalmology 1999; 21: 83-95.Google Scholar
  20. 20.
    Dell'Osso LF, Daroff RB. Braking saccade-A new fast eye movement. Aviat Space Environ Med 1976; 47: 435-7.Google Scholar
  21. 21.
    Dell'Osso LF, Gauthier G, Liberman G, Stark L. Eye movement recordings as a diagnostic tool in a case of congenital nystagmus. Am J Optom Arch Am Acad Optom 1972; 49: 3-13.Google Scholar
  22. 22.
    Dell'Osso LF, Averbuch-Heller L, Leigh RJ. Oscillopsia suppression and foveation-period variation in congenital, latent, and acquired nystagmus. Neuro-Ophthalmology 1997; 18: 163-83.Google Scholar
  23. 23.
    Jacobs JB, Dell'Osso LF. A model of congenital nystagmus (CN) incorporating braking and foveating saccades. ARVO abstracts. Invest Ophthalmol Vis Sci 2000; 41: S701.Google Scholar
  24. 24.
    Jacobs JB. An Ocular Motor System Model that Simulates Congenital Nystagmus, Including Braking and Foveating Saccades. (Ph.D. Dissertation). In: Biomedical Engineering. Case Western Reserve University: Cleveland, 2001: 1-357.Google Scholar
  25. 25.
    Worfolk R, Abadi RV. Quick phase programming and saccadic re-orientation in congenital nystagmus. Vision Res 1991; 31: 1819-30.Google Scholar
  26. 26.
    Dell'Osso LF, Daroff RB. Congenital nystagmus waveforms and foveation strategy. Doc Ophthalmol 1975; 39: 155-82.Google Scholar
  27. 27.
    Jacobs JB, Dell'Osso LF. Congenital nystagmus braking saccade characteristics [ARVO abstracts]. Invest Ophthalmol Vis Sci 1997; 38: S650.Google Scholar
  28. 28.
    Abadi RV, Worfolk R. Retinal slip velocities in congenital nystagmus. Vision Res 1989; 29: 195-205.Google Scholar
  29. 29.
    Broomhead DS, Clement RA, Muldoon MR, Whittle JP, Scallan C, Abadi RV. Modelling of congenital nystagmus waveforms produced by saccadic system abnormalities. Biol Cyber 2000; 82: 391-9.Google Scholar
  30. 30.
    Dell'Osso LF, Jacobs JB. An expanded nystagmus acuity function: intra-and intersubject prediction of best-corrected visual acuity. Doc Ophthalmol 2002; 104: 249-76.Google Scholar
  31. 31.
    Steinman RM, Collewijn H. Binocular retinal image motion during active head rotation. Vision Res 1980; 20: 415-29.Google Scholar
  32. 32.
    van der Geest JN, Frens MA. Recording eye movements with video-oculography and scleral search coils: a direct comparison of two methods. J Neurosci Methods 2002; 114(2): 185-95.Google Scholar
  33. 33.
    Frens MA, van der Geest JN. Scleral search coils influence saccade dynamics. J Neurophysiol 2002; 88: 676-91.Google Scholar
  34. 34.
    Sheth NV, Dell'Osso LF, Leigh RJ, Van Doren CL, Peckham HP. The effects of afferent stimulation on congenital nystagmus foveation periods. Vision Res 1995; 35: 2371-82.Google Scholar
  35. 35.
    Dell'Osso LF, Hertle RW, Williams RW, Jacobs JB. A new surgery for congenital nystagmus: effects of tenotomy on an achiasmatic canine and the role of extraocular proprioception. J Am Assoc Pediatr Ophthalmol Strab 1999; 3: 166-82.Google Scholar
  36. 36.
    Bahill AT, McDonald JD. Frequency limitations and optimal step size for the two-point central difference derivative algorithm with applications to human eye movement data. IEEE Trans Biomed Eng 1983; 30(3): 191-4.Google Scholar
  37. 37.
    Jantti V, Pyykko I, Juhola M, Ignatius J, Hansson GA, Henriksson NG. Effect of filtering in the computer analysis of saccades. Acta Otolaryngol Suppl 1984; 406: 231-4.Google Scholar
  38. 38.
    Enderle JD, Hallowell MB. Saccade derivative filters and their clinical implications. Biomed Sci Instrum 1997; 34: 206-11.Google Scholar
  39. 39.
    Winters JM, Nam MH, Stark LW. Modeling dynamical interactions between fast and slow movements: Fast saccadic eye movement behavior in the presence of the slower VOR. Math Biosci 1984; 68: 159-85.Google Scholar
  40. 40.
    Van Opstal AJ, Van Gisbergen JAM. Skewness of saccadic velocity profiles: A unifying parameter for normal and slow saccades. Vision Res 1987; 27: 731-45.Google Scholar
  41. 41.
    Collewijn H, Erkelens CJ, Steinman RM. Binocular coordination of human horizontal saccadic eye movements. J Physiol 1988; 404: 157-82.Google Scholar
  42. 42.
    Jacobs JB, Dell'Osso LF. A dual-mode model of latent nystagmus. ARVO abstracts. Invest Ophthalmol Vis Sci 1999; 40: S962.Google Scholar
  43. 43.
    Dell'Osso LF, Jacobs JB. A normal ocular motor system model that simulates the dual-mode fast phases of latent/ manifest latent nystagmus. Biol Cyber 2001; 85: 459-71.Google Scholar
  44. 44.
    Zee DS, Fitzgibbon EJ, Optican LM. Saccade-vergence interactions in humans. J Neurophysiol 1992; 68: 1624-41.Google Scholar
  45. 45.
    Becker W. Metrics. In: Wurtz RM, Goldberg ME, eds. The neurobiology of saccadic eye movements. Amsterdam: Elsevier Science Publishers BV, 1989: 13-67.Google Scholar
  46. 46.
    Bahill AT, Brockenbrough A, Troost BT. Variability and development of a normative database for saccadic eye movements. Invest Ophthalmol Vis Sci 1981; 21: 116-25.Google Scholar
  47. 47.
    Steinman RM, Haddad GM, Skavenski AA, Wyman D. Miniature eye movement. Science 1973; 181: 810-9.Google Scholar
  48. 48.
    Kapoula ZA, Robinson DA, Hain TC. Motion of the eye immediately after a saccade. Exp Brain Res 1986; 61: 386-94.Google Scholar
  49. 49.
    Abadi RV, Scallan CJ, Clement RA. The characteristics of dynamic overshoots in square-wave jerks, and in congenital and manifest latent nystagmus. Vision Res 2000; 40: 2813-29.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jonathan B. Jacobs
    • 1
  • Louis F. Dell'Osso
    • 1
  • R. John Leigh
    • 2
    • 3
  1. 1.Ocular Motor Neurophysiology Laboratory andNeurology and Biomedical EngineeringCase Western Reserve University and University Hospitals of ClevelandClevelandUSA
  2. 2.Ocular Motor Neurophysiology Laboratory andNeurology ServiceVeterans Affairs Medical CenterUSA
  3. 3.Departments of Neurology and Biomedical EngineeringCase Western Reserve University and University Hospitals of ClevelandClevelandUSA

Personalised recommendations