Advertisement

Synthese

, Volume 137, Issue 1–2, pp 211–259 | Cite as

The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program

  • Richard Zach
Article

Abstract

After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe University of Göttingen between 1917 and 1923, and notably in Ackermann's dissertation of 1924. The main innovation was theinvention of the ∈-calculus, on which Hilbert's axiom systemswere based, and the development of the ∈-substitution methodas a basis for consistency proofs. The paper traces the developmentof the ``simultaneous development of logic and mathematics'' throughthe ∈-notation and provides an analysis of Ackermann'sconsistency proofs for primitive recursive arithmetic and for thefirst comprehensive mathematical system, the latter using thesubstitution method. It is striking that these proofs use transfiniteinduction not dissimilar to that used in Gentzen's later consistencyproof as well as non-primitive recursive definitions, and that thesemethods were accepted as finitistic at the time.

Keywords

Axiomatic System Mathematical System Simultaneous Development Recursive Definition Main Innovation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ackermann, H. R.: 1983, ‘Aus dem Briefwechsel Wilhelm Ackermanns’, History and Philosophy of Logic 4, 181–202.Google Scholar
  2. Ackermann, W.: 1924a, ‘Begründung des “tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit’, Mathematische Annalen 93, 1–36.Google Scholar
  3. Ackermann, W.: 1924b, ‘Begründung des “tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit’, Dissertation, Universität Göttingen..Google Scholar
  4. Ackermann, W.: 1928a, ‘Ñber die Erfüllbarkeit gewisser Zählausdrücke’, Mathematische Annalen 100, 638–649.Google Scholar
  5. Ackermann, W.: 1928b, ‘Zum Hilbertschen Aufbau der reellen Zahlen’, Mathematische Annalen 99, 118–133.Google Scholar
  6. Ackermann, W.: 1940, ‘Zur Widerspruchsfreiheit der Zahlentheorie’, Mathematische Annalen 117, 162–194.Google Scholar
  7. Ackermann, W.: 1954, Solvable Cases of the Decision Problem, North-Holland, Amsterdam.Google Scholar
  8. Behmann, H.: 1918, ‘Die Antinomie der transfiniten Zahl und ihre Auflösung durch die Theorie von Russell und Whitehead’, Dissertation, Universität Göttingen, 352 pp.Google Scholar
  9. Bernays, P.: 1918, ‘Beiträge zur axiomatischen Behandlung des Logik-Kalküls’, Habilitationsschrift, Universität Göttingen. Bernays Nachlaß, WHS, Bibliothek, ETH Zürich, Hs 973.192.Google Scholar
  10. Dawson, J. W.: 1988, ‘The Reception of Gödel's Incompleteness Theorems’, In: S. G. Shanker (ed.), Gödel's Theorem in Focus. Routledge, London and New York, pp. 74–95.Google Scholar
  11. Dedekind, R.: 1888, Was sind und was sollen die Zahlen? Vieweg, Braunschweig. English translation in Dedekind (1901).Google Scholar
  12. Dedekind, R.: 1901, Essays on the Theory of Number, Open Court, New York.Google Scholar
  13. Ewald, W. B. (ed.): 1996, From Kant to Hilbert. A Source Book in the Foundations of Mathematics, Vol. 2, Oxford University Press, Oxford.Google Scholar
  14. Gentzen, G.: 1936, ‘Die Widerspruchsfreiheit der reinen Zahlentheorie’, Mathematische Annalen 112, 493–565.Google Scholar
  15. Grattan-Guinness, I.: 2000, The Search For Mathematical Roots 1870-1940. Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to Gödel, Princeton University Press, Princeton, N.J.Google Scholar
  16. Hermes, H.: 1967, ‘In memoriam Wilhelm Ackermann, 1896-1962’, Notre Dame Journal of Formal Logic 8, 1–8.Google Scholar
  17. Hilbert, D.: 1900, ‘Mathematische Probleme’, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, pp. 253–297. Lecture given at the International Congress of Mathematicians, Paris, 1900. Partial English translation in Ewald (1996, 1096-1105).Google Scholar
  18. Hilbert, D.: 1905, ‘Ñber die Grundlagen der Logik und der Arithmetik’, In: A. Krazer (ed.), Verhandlungen des dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904. Leipzig, pp. 174–185, Teubner. English translation in van Heijenoort (1967, 129-38).Google Scholar
  19. Hilbert, D.: 1918a, ‘Axiomatisches Denken’, Mathematische Annalen 78, 405–415. Lecture given at the Swiss Society of Mathematicians, 11 September 1917. Reprinted in Hilbert (1935, 146-56). English translation in Ewald (1996, 1105-1115).Google Scholar
  20. Hilbert, D.: 1918b, ‘Prinzipien der Mathematik’, Lecture notes by Paul Bernays. Winter-Semester 1917-18. Unpublished typescript. Bibliothek, Mathematisches Institut, Universität Göttingen.Google Scholar
  21. Hilbert, D.: 1920a, ‘Logik-Kalkül’, Vorlesung, Winter-Semester 1920. Lecture notes by Paul Bernays. Unpublished typescript. Bibliothek, Mathematisches Institut, Universität Göttingen.Google Scholar
  22. Hilbert, D.: 1920b, ‘Probleme der mathematischen Logik’, Vorlesung, Sommer-Semester 1920. Lecture notes by Paul Bernays and Moses Schönfinkel. Unpublished typescript. Bibliothek, Mathematisches Institut, Universität Göttingen.Google Scholar
  23. Hilbert, D.: 1922a, ‘Grundlagen der Mathematik’, Vorlesung, Winter-Semester 1921-1922. Lecture notes by Helmut Kneser. Unpublished manuscript, three notebooks.Google Scholar
  24. Hilbert, D.: 1922b, ‘Grundlagen der Mathematik’, Vorlesung, Winter-Semester 1921-1922. Lecture notes by Paul Bernays. Unpublished typescript. Bibliothek, Mathematisches Institut, Universität Göttingen.Google Scholar
  25. Hilbert, D.: 1922c, ‘Neubegründung der Mathematik: Erste Mitteilung’, Abhandlungen aus dem Seminar der Hamburgischen Universität 1, 157–77. Series of talks given at the University of Hamburg, July 25-27, 1921. Reprinted with notes by Bernays in Hilbert (1935, 157-177). English translation inMancosu (1998, 198-214) and Ewald (1996, 1115-1134).Google Scholar
  26. Hilbert, D.: 1923, ‘Die logischen Grundlagen der Mathematik’, Mathematische Annalen 88, 151–165. Lecture given at the Deutsche Naturforscher-Gesellschaft, September 1922. Reprinted in Hilbert (1935, 178-191). English translation in Ewald (1996, 1134-1148).Google Scholar
  27. Hilbert, D.: 1926, ‘Ñber das Unendliche’, Mathematische Annalen 95, 161–190. Lecture given Münster, 4 June 1925. English translation in van Heijenoort (1967, 367-392).Google Scholar
  28. Hilbert, D.: 1928a, ‘Die Grundlagen der Mathematik’, Abhandlungen aus dem Seminar der Hamburgischen Universität 6, 65–85. English translation in van Heijenoort (1967, 464-479).Google Scholar
  29. Hilbert, D.: 1928b, ‘Probleme der Grundlegung der Mathematik’, in N. Zanichelli (ed.), Atti del Congresso Internazionale dei Matematici, 3-10 September 1928, Bologna, pp. 135–141.Google Scholar
  30. Hilbert, D.: 1929, ‘Probleme der Grundlegung der Mathematik’, Mathematische Annalen 102, 1–9. Lecture given at the International Congress of Mathematicians, 3 September 1928. English translation in Mancosu (1998, 266-273).Google Scholar
  31. Hilbert, D.: 1935, Gesammelte Abhandlungen, Vol. 3. Springer, Berlin.Google Scholar
  32. Hilbert, D. and W. Ackermann: 1928, Grundzüge der theoretischen Logik, Springer, Berlin.Google Scholar
  33. Hilbert, D. and P Bernays: 1923a, ‘Logische Grundlagen der Mathematik’, Winter-Semester 1922-1923. Lecture notes by Helmut Kneser, unpublished manuscript.Google Scholar
  34. Hilbert, D. and P. Bernays: 1923b, ‘Logische Grundlagen der Mathematik’, Vorlesung, Winter-Semester 1922-1923. Lecture notes by Paul Bernays, with handwritten notes by Hilbert. Hilbert-Nachlaß, Niedersächsische Staats-und Universitätsbibliothek, Cod. Ms. Hilbert 567.Google Scholar
  35. Hilbert, D. and P. Bernays: 1934, Grundlagen der Mathematik, Vol. 1, Springer, Berlin.Google Scholar
  36. Hilbert, D. and P. Bernays: 1939, Grundlagen der Mathematik, Vol. 2, Springer, Berlin.Google Scholar
  37. Leisenring, A. C.: 1969, Mathematical Logic and Hilbert's ε-Symbol, MacDonald, London.Google Scholar
  38. Mancosu, P. (ed.): 1998, From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, Oxford.Google Scholar
  39. Mancosu, P.: 1999a, ‘Between Russell and Hilbert: Behmann on the Foundations of Mathematics’, Bulletin of Symbolic Logic 5(3), 303–330.Google Scholar
  40. Mancosu, P.: 1999b, ‘Between Vienna and Berlin: The Immediate Reception of Gödel's Incompleteness Theorems’, History and Philosophy of Logic 20, 33–45.Google Scholar
  41. Mints, G.: 1994, ‘Gentzen-type Systems and Hilbert's Epsilon Substitution Method I’, in D. Prawitz, B. Skyrms, and D. Westerståhl (eds.), Logic, Methodology and Philosophy of Science IX, Elsevier, Amsterdam, pp. 91–122.Google Scholar
  42. Mints, G.: 1996, ‘Thoralf Skolem and the Epsilon Substitution Method for Predicate Logic’, Nordic Journal of Philosophical Logic 1(2), 133–146.Google Scholar
  43. Mints, G. and S. Tupailo: 1999, ‘Epsilon-Substitution for the Ramified Language and-comprehension Rule’, in A. Cantini, E. Casari, and P. Minari (eds.), Logic and Foundations of Mathematics, Kluwer, Dordrecht, pp. 107–130.Google Scholar
  44. Mints, G., S. Tupailo, and W. Buchholz: 1996, ‘Epsilon Substitution Method for Elementary Analysis’, Archive for Mathematical Logic 35, 103–130.Google Scholar
  45. Moser, G.: 2000, ‘The Epsilon Substitution Method’, Master's thesis, University of Leeds.Google Scholar
  46. Parsons, C.: 1998, ‘Finitism and Intuitive Knowledge’, in M. Schirn (ed.), The Philosophy of Mathematics Today, Oxford University Press, Oxford, pp. 249–270.Google Scholar
  47. Peckhaus, V.: 1990, Hilbertprogramm und Kritische Philosophie, Vandenhoeck und Ruprecht, Göttingen.Google Scholar
  48. Sieg, W.: 1999, ‘Hilbert's Programs: 1917-1922’, Bulletin of Symbolic Logic 5(1), 1–44.Google Scholar
  49. Skolem, T.: 1923, ‘Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich’, Videnskapsselskapets skrifter I. Matematisk-naturvidenskabelig klasse 6. English translation in van Heijenoort (1967, 302-333).Google Scholar
  50. Tait, W. W.: 1965, ‘The Substitution Method’, Journal of Symbolic Logic 30, 175–192.Google Scholar
  51. Tait, W. W.: 1981, ‘Finitism’, Journal of Philosophy 78, 524–546.Google Scholar
  52. Tait, W. W.: 2002, ‘Remarks on Finitism’, in W. Sieg, R. Sommer, and C. Talcott (eds.), Reflections on the Foundations of Mathematics. Essays in Honor of Solomon Feferman, LNL 15. Association for Symbolic Logic.Google Scholar
  53. van Heijenoort, J. (ed.): 1967, From Frege to Gödel. A Source Book in Mathematical Logic, 1897-1931, Harvard University Press, Cambridge, MA.Google Scholar
  54. von Neumann, J.: 1927, ‘Zur Hilbertschen Beweistheorie’, Mathematische Zeitschrift 26, 1–46.Google Scholar
  55. Whitehead, A. N. and B. Russell: 1910, Principia Mathematica, Vol. 1, Cambridge University Press, Cambridge.Google Scholar
  56. Whitehead, A. N. and B. Russell: 1913, Principia Mathematica, Vol. 2, Cambridge University Press, Cambridge.Google Scholar
  57. Zach, R.: 1998, ‘Numbers and Functions in Hilbert's Finitism’, Taiwanese Journal for Philosophy and History of Science 10, 33–60.Google Scholar
  58. Zach, R.: 1999, ‘Completeness before Post: Bernays, Hilbert, and the Development of Propositional Logic’, Bulletin of Symbolic Logic 5(3), 331–366.Google Scholar
  59. Zach, R.: 2001a, ‘Hilbert's Program: Historical, Philosophical, and Metamathematical Perspectives’, Ph.D. thesis, University of California, Berkeley.Google Scholar
  60. Zach, R.: 2001b, ‘Hilbert's “Verunglückter Beweis” and the Epsilon-Theorems’, in preparation.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Richard Zach
    • 1
  1. 1.Department of PhilosophyUniversity of CalgaryCalgaryCanada E-mail

Personalised recommendations