User Modeling and User-Adapted Interaction

, Volume 13, Issue 4, pp 311–372 | Cite as

Web Usage Mining as a Tool for Personalization: A Survey

  • Dimitrios Pierrakos
  • Georgios Paliouras
  • Christos Papatheodorou
  • Constantine D. Spyropoulos


This paper is a survey of recent work in the field of web usage mining for the benefitof research on the personalization of Web-based information services. The essence of personalization is the adaptability of information systems to the needs of their users. This issue is becoming increasingly important on the Web, as non-expert users are overwhelmed by the quantity of information available online, while commercial Web sites strive to add value to their services in order to create loyal relationships with their visitors-customers. This article views Web personalization through the prism of personalization policies adopted by Web sites and implementing a variety of functions. In this context, the area of Web usage mining is a valuable source of ideas and methods for the implementation of personalization functionality. We therefore present a survey of the most recent work in the field of Web usage mining, focusing on the problemsthat have been identified and the solutions that have been proposed.

data mining machine learning personalization user modeling web usage mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amazon, Scholar
  2. CAPRI., Scholar
  3. Computer Industry Almanac, Scholar
  4. www.cyberdialogue.comGoogle Scholar
  5. www.datamonitor.comGoogle Scholar
  6. IBM WebSphere Personalization Server, software/webservers/ personalization/Google Scholar
  7. KDnuggets, Scholar
  8. MindLab, http://www.mindlab.deGoogle Scholar
  9. Net erceptions, http://www.netperceptionscom/Google Scholar
  10. ORACLE, Scholar
  11. LUMIO, http://www.lumio.comGoogle Scholar
  12. P3P, Scholar
  13. SPSS Clementine, Scholar
  14. USA Today, http://www.usatoday.comGoogle Scholar
  15. W3C,World Wide Web Consortium,Extended Log Format, WD-log?leGoogle Scholar
  16. European Union Directive: Scholar
  17. Agrawal, R. and Srikant, R.: 1994, Fast algorithms for mining association rules, In: Proceedings of the 20th VLDB Conference,Sa ntiago Chile, pp. 487–499.Google Scholar
  18. Albrecht, D. W., Zukerman, I. and Nicholson, A. E.: 1999, Pre-sending Documents on the WWW: AComparative Study, In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI99). (2),S tockholm,S weden,p p. 1274–1279.Google Scholar
  19. Anderson, C. R., Domingos, P. and Weld, D. S.: 2001 a, AdaptiveWeb Navigation forWireless Devices, In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, (IJCAI-01), 879–884.Google Scholar
  20. Anderson, C. R., Domingos, P. and Weld, D. S.: 2001b, PersonalizingWeb Sites forMobileUsers, In: Proceedings of the 10thWorld Wide Web Conference, (WWW10), 565–575.Google Scholar
  21. Ardissono, L., Goy, A. Meo, R. Petrone, G. Console, L. Lesmo, L. Simone, C. and Torasso, P.: 1999, A configurable system for the construction of adaptive virtual stores, World Wide Web (WWW), 2(3), 143–159.CrossRefGoogle Scholar
  22. Ardissono, L. and Torasso, P.: 2000, Dynamic User Modeling in a Web Store Shell, In: Proceedings of the 14th Conference ECAI,Berlin, Germany, pp. 621–625.Google Scholar
  23. Bestavros, A.: 1995, Using Speculation toReduce Server Load and ServiceTime on theWWW, In: Proceedings of CIKM’95:The 4th ACMInternational Conference on Information and Knowledge Management, Ba ltimore, Maryland, 403–410.Google Scholar
  24. Bezdek, J. C.: 1981, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press: New York.Google Scholar
  25. Biswas, G., Weinberg, J. B. and Fisher, D.: 1998, ITERATE: A conceptual clustering algorithm for data mining, IEEE Transactions on Systems, Man and Cybernetics, 28, 100–111.Google Scholar
  26. Borges, J. and Levene, M.: 1999, Data mining of user navigation patterns, In: Proceedings of Workshop on Web Usage Analysis and User Profiling (WEBKDD), in conjunction with ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Diego,C A., pp. 31–36.Google Scholar
  27. Bouganis C., Koukopoulos, D. and Kalles, D.: 1999, A Real Time Auction System over the WWW, Conference on Communication Networks and Distributed Systems Modeling and Simulation,San Francisco, CA, USA, 1999.Google Scholar
  28. Breese, J. S.,D. Heckerman, D. and Kadie, K.: 1998, Empirical analysis of predictive algorithms for collaborative filtering, In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, San Francisco. Morgan Kaufmann Publishers, pp. 43–52.Google Scholar
  29. Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J.: 1984, Classi?cation andRegression Trees. SIGMOD Record 26(4), Wadsworth: Belmont. CA, pp. 8–15.Google Scholar
  30. Broder, A.: 2000, Data Mining, The Internet and Privacy. WEBKDD’99, LNAI 1836, pp. 56–73.Google Scholar
  31. Brusilovsky, P.: 1998, Adaptive educational systems on the world-wide-web: A review of available technologies, In: Proceedings of workshop “www.Base & Tutoring”, Fourth International Conference in Intelligent Tutoring Systems, San Antonio, TX, 1998.Google Scholar
  32. Büchner, A. G. and Mulvenna, M. D.: 1999, Discovering Internet marketing intelligence through online analytical Web usage mining, SIGMOD Record, 27(4), 54–61.Google Scholar
  33. Cadez. I, Heckerman, D., Meek, C., Smyth, P. and White, S.: 2000, Visualization of Navigation Patterns on a Web Site Using Model Based Clustering. Technical Report MSR-TR-00-18. Microsoft Research.Google Scholar
  34. Catledge, L. D. and Pitkow, J. E.: 1995, Characterizing Browsing Strategies in theWorld Wide Web, Computer Networks and ISDN Systems 27(6), El sevier Science, 1065–1073.CrossRefGoogle Scholar
  35. Chakrabarti, S.: 2000, Data mining for hypertext: Atutorial survey, ACMSIGKDDExplorations, 1(2), 1–11.Google Scholar
  36. Chan, P. K.: 1999,A non-invasive learning approach to buildingWeb user profiles, In: Proceedings of 5th ACMSIGKDD International Conference,Workshop onWeb Usage Analysis and User Profiling, S pringer, p 7–12.Google Scholar
  37. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. and Wirth, R.: 2000, CRISP-DM 1.0: Step-by-step data mining guide. SPSS Inc.Google Scholar
  38. Chen, M. S., Park, J. S. and Yu, P. S.: 1996, Data Mining for Path Traversal Patterns in aWeb Environment, In: Proceedings of the 16th International Conference on Distributed Computing Systems, pp. 385–392.Google Scholar
  39. Cingil, I., Dogac, A. and Azgin, A.: 2000, A Broader Approach to Personalization, Communications of the ACM, 43(8), 136–141.CrossRefGoogle Scholar
  40. Cohen, W.: 1995, Fast effective rule induction, In: Proceedings of the 12th International Conference on Machine Learning, Morgan Kaufmann: San Mateo, CA, pp. 115–123.Google Scholar
  41. Cooley, R., Mobasher, B. and Srivastava, J.: 1997a, GroupingWeb page references into transactions for mining World Wide Web browsing patterns. Technical Report TR 97-021. Dept. of Computer Science,U niv. of Minnesota, Minneapolis, USA.Google Scholar
  42. Cooley, R., Srivastava, J. and Mobasher, B.: 1997b, Web Mining: Information and Pattern Discovery on the World Wide Web, In: Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’97), pp. 558–567.Google Scholar
  43. Cooley, R., Mobasher, B. and Srivastava, J.: 1999a, Data preparation for miningWorldWideWeb browsing patterns, Journal of Knowledge and Information Systems, 1(1), 55–32.Google Scholar
  44. Cooley, R., Tan, P. N. and Srivastava, J.: 1999b, WebSIFT: The Web Site Information Filter System, In: Proceedings of the Web Usage Analysis and User Profiling Workshop (WEBKDD’99).Google Scholar
  45. Cooley, R., Tan, P. N. and Srivastava, J.: 1999c, Discovering of interesting usage patterns from Web data. TR 99-022. University of Minnesota.Google Scholar
  46. Cunha, C. A., Bestavros, A. and Crovella, M. E.: 1995, Characteristics of WWW Client-based Traces. Technical Report TR-95-010. Boston University,D epartment of Computer Science.Google Scholar
  47. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman, R.: 1990, Indexing By Latent Semantic Analysis, Journal of the American Society For Information Science, 41, 391–407.CrossRefGoogle Scholar
  48. Dempster, A. P., Laird, N. M. and Rubin, D. B.: 1977, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society B, 39, 1–38.Google Scholar
  49. Duda, R. and Hart, P.: 1973, Pattern Classi?cation and scene analysis, Journal of Documentation, New York: Wiley, 35, 285–295.Google Scholar
  50. Estivill-Castro, V.: 2002, Why so many clustering algorithms-A Position Paper, SIGKDD Explorations, 4(1), 65–75.Google Scholar
  51. Etzioni, O.: 1996, The world wideWeb: Quagmire or gold mine, Communications of the ACM, 39(11), 65–68.CrossRefGoogle Scholar
  52. Faulstich, L. C.: 1999, Building HyperView web sites. Technical Report B 99-09, In st. of Computer Science, FU Berlin.Google Scholar
  53. Feldmann, A.: 1998, Continuous online extraction of HTTP traces from packet traces, In: Proceedings W3C Web Characterization Group Workshop.Google Scholar
  54. Fielding, R., Gettys, J., Mogul, J., Masinter, L., Leach, P. and Berners-Lee, T.: 1999, RFC 2616-Hypertext Transfer Protocol-HTTP/1.1.Google Scholar
  55. Fisher, D.: 1987, Knowledge acquisition via incremental conceptual clustering, Machine Learning, 2, 139–172.Google Scholar
  56. Fu, Y., Sandhu, K. and Shih, M. Y.: 1999, Clustering of WebUsers Based on Access Patterns, In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Springer: San Diego.Google Scholar
  57. Halkidi, M., Batistakis, Y. and Vazirgiannis, M.: 2001, On Clustering Validation Techniques, Journal of Intelligent Information Systems, 17(2-3), 107–145.CrossRefGoogle Scholar
  58. Han, E. H., Karypis, G., Kumar, V. and Mobasher, B.: 1997, Clustering based on association rule hypergraphs, In: Proceedings of SIGMOD’97Workshop on Research issues inDataMining and Knowledge Discovery, 9–13.Google Scholar
  59. Han, J., Cai, Y. and Cercone, N.: 1992, Knowledge discovery in databases: An attributeoriented approach, In: Proceedings of 18th International Conference on Very Large Databases, Vancouver, Canada, pp. 547–559.Google Scholar
  60. Han, J. and Kamber, M. 2001, DataMining: Concepts and Techniques, Morgan Kaufmann Publishers.Google Scholar
  61. Hanson, R., Stutz, J. and Cheeseman, P.: 1991, Bayesian classification theory.TR-FIA-90-12-7-01. AI Branch, NASA Ames Research Center,CAGoogle Scholar
  62. Hartigan, J.: 1975, Clustering Algorithms. John Wiley.Google Scholar
  63. Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R. and Kadie, C.: 2000, Dependency Networks for Density Estimation,Co llaborative Filtering, and Data Visualization. Technical Report MSR-TR-00-16,M icrosoft Research.Google Scholar
  64. Hipp, J., Güntzer, U. and Nakhaeizadeh, G.: 2000, Algorithms forAssociation RuleMining-A General Survey and Comparison, SIGKDD Explorations, 2(1), 58–64.Google Scholar
  65. Jörding, T.: 1999, A Temporary User Modeling Approach for Adaptive Shopping on the Web, In: Proceedings of the 2nd Workshop on Adaptive Systems and User Modeling on the WWW, UM’99,Banff, Canada, 75–79.Google Scholar
  66. Joshi, A. and Joshi, K.: 2000, On Mining Web Access Logs, In: ACM SIGMODWorkshop on Research Issues in Data Mining and Knowledge Discovery, pp. 63–69.Google Scholar
  67. Kamdar, T. and Joshi, A.: 2000, On Creating AdaptiveWeb Sites usingWebLogMining. Technical Report TR-CS-00-05. Department of Computer Science and Electrical Engineering University of Maryland, Baltimore County.Google Scholar
  68. Kobsa, A., Koenemann, J. and Pohl, W.: 2001, Personalized Hypermedia Presentation Techniques for Improving Online Customer Relationships, The Knowledge Engineering Review 16(2), 111–155.Google Scholar
  69. Kobsa, A.: 2001, Tailoring Privacy toUser’s Needs. Invited Keynote, 8th International Conference on User Modeling, Sonthofen, Germany, 303–313.Google Scholar
  70. Kobsa, A. and Fink, J.: 2003, Performance Evaluation of User Modeling Servers Under Real-WorldWorkload Conditions, In: Proceedings of the 9th International Conference onUser Modeling, J ohnstown, PA, 143–153.Google Scholar
  71. Kohonen, T.: 1997, Self-organizing Maps (second edition). Springer Verlag: Berlin.Google Scholar
  72. Kosala, R. and Blockeel, H.: 2000,WebMining Research: A Survey, SIGKDDExplorations, 2(1), 1–15.Google Scholar
  73. Koychev, I.: 2000, Gradual Forgetting for Adaptation to Concept Drift, In: Proceedings of ECAI 2000Workshop’Current Issues in Spatio-Temporal Reasoning’,Berlin, Germany, pp. 101–106.Google Scholar
  74. Kristol, D. and Montulli, L.: 2000, RFC 2965-HTTP State Management Mechanism.Google Scholar
  75. Lang, K.: 1995, NEWSWEEDER: Learning to ?lter news, In: Proceedings of the 12th International Conference on Machine Learning, Lake Tahoe, CA: Morgan Kaufmann, pp. 331–339.Google Scholar
  76. Langley, P.: 1999, User modeling in adaptive interfaces, In: Proceedings of the Seventh International Conference on User Modeling, Banff, Canada, pp. 357–370.Google Scholar
  77. Maheswari, Uma., Siromoney, V. A. and Mehata, K. M.: 2001, TheVariable Precision Rough Set Model for Web Usage Mining, In: Proceedings of the First Asia-Paci?c Conference on Web Intelligence (WI’2001), Maebashi City, Japan, Oct 2001, Lecture Notes in Computer Science, 2198, pp. 520–524, Springer Verlag.Google Scholar
  78. Manber, U., Patel, A. and Robison, J.: 2000, Experience with Personalization on Yahoo, Communications of the ACM, 43(8), 35–39.CrossRefGoogle Scholar
  79. Mitchell, T., Caruana, R., Freitag, D., McDermott, J. and Zabowski, D.: 1994, Experience with a learning personal assistant,Co mmunications of the ACM, 37(7), 81–91.Google Scholar
  80. Mobasher, B., Jain, N., Han, E. and Srivastava, J.: 1996, Web Mining: Pattern Discovery, from World Wide Web Transactions. TR-96050, Department of Computer Science. DePaul University.Google Scholar
  81. Mobasher, B., Cooley, R. and Srivastava, J.: 1999a, Automatic personalization based onWeb usage mining. TR-99010, Department of Computer Science. DePaul University.Google Scholar
  82. Mobasher, B., Cooley, R. and Srivastava, J.: 1999b, Creating adaptive web sites through usagebased clustering of URLs, In: Proceedings of the 1999 IEEE Knowledge and Data Engineering ExchangeWorkshop (KDEX’99), 14 3–153.Google Scholar
  83. Mobasher, B., Dai, H., Luo, T., Sung, Y. and Zhu, J.: 2000a, Integrating web usage and content mining for more effective personalization, In: Proceedings of the International Conference on E-Commerce and Web Technologies (ECWeb2000), Greenwich, UK, pp. 165–176.Google Scholar
  84. Mobasher, B., Cooley, R. and Srivastava, J.: 2000b, Automatic personalization based onWeb usage mining, Communications of the ACM, 43(8), 142–151.CrossRefGoogle Scholar
  85. Monti, S and Cooper, G. F.: 1998, Learning hybrid bayesian networks from data, In: Jordan M.I. (ed.), Learning in Graphical Models, Kluwer Academic Publishers, 521–540.Google Scholar
  86. Mulvenna, M. D., Büchner, A. G., Norwood, M. T. and Grant, C.: 1997, The “soft-Push’:mining internet data for marketing intelligence, In: Working Conference: Electronic Commerce in the Framework of Mediterranean Countries Development, Ioannina, Greece, pp. 333–349.Google Scholar
  87. Mulvenna, M. D. and Büchner,A. G.: 1997, Data mining and electronic commerce, Overcoming Barriers to Electronic Commerce, (OBEC ‘97), Malaga, Spain, 1–7.Google Scholar
  88. Nasraoui, O., Krishnapuram, R. and Joshi, A.: 1999, Relational clustering based on a new robust estimator with applications to web mining, In: Proceedings of the International Conf. North American Fuzzy Info. Proc. Society (NAFIPS 99), New York, 705–709.Google Scholar
  89. Ngu, D. S. W. and Wu, X.: 1997, SiteHelper: A localized agent that helps incremental exploration of the world wide web. Computer Networks and ISDN Systems: The International Journal of Computer and Telecommunications Networking, 29(8), 1249–1255.Google Scholar
  90. Paliouras G., Karkaletsis, V., Papatheodorou, C. and Spyropoulos, C. D.: 1999, Exploiting learning techniques for the acquisition of user stereotypes and communities, In: Proceedings of the International Conference on User Modeling, CISM Courses and Lectures, 407, pp. 169–178.Google Scholar
  91. Paliouras, G., Papatheodorou, C., Karkaletsis, V., Tzitziras, P. and Spyropoulos, C. D.: 2000a, Large-ScaleMining of Usage Data onWeb Sites. AAAI Spring Symposium on Adaptive User Interfaces. Stanford, California, 92–97.Google Scholar
  92. Paliouras, G., Papatheodorou, C., Karkaletsis, V. and Spyropoulos, C. D.: 2000b, Clustering the Users of Large Web Sites into Communities, In: Proceedings of International Conference on Machine Learning (ICML), Stanford, California, pp. 719–726.Google Scholar
  93. Pei, J., Han, J. Mortazavi-Asl, B. and Zhu, H.: 2000, Mining access pattern e?ciently from web logs, In: Proceedings 2000 Paci?c-Asia Conference on Knowledge Discovery and DataMining (PAKDD’00), Kyoto, Japan, pp. 396–407.Google Scholar
  94. Pennock, D., Horvitz, E., Lawrence, S. and Lee Giles, C.: 2000, Collaborative Filtering by Personality Diagnosis:A HybridMemory andModel-Based Approach. UAI-2000:The 16th Conference on Uncertainty in Artificial Intelligence. Stanford University, Stanford, CA, pp. 473–480.Google Scholar
  95. Perkowitz, M. and Etzioni, O.: 1998, Adaptive sites: Automatically synthesizing Web pages, In: Proceedings of the 15th National Conference on Artificial Intelligence. Madison, Wisconsin, pp. 727–732.Google Scholar
  96. Perkowitz, M. and Etzioni, O.: 2000, AdaptiveWeb Sites, Communications of the ACM, 43(8), 152–158.CrossRefGoogle Scholar
  97. Pitkow, J., and Bharat, K.: 1994, WEBVIZ: ATool forWorld-WideWeb Access LogVisualization, In: Proceedings of the 1st International World-Wide Web Conference. Geneva, Switzerland, 271–277.Google Scholar
  98. Pitkow, J.: 1997, In search of reliable usage data on theWWW, In: Proceedings of the 6th Int.World Wide Web Conference, Santa Clara, CA, 451–463.Google Scholar
  99. Pitkow, J. and Pirolli, P.: 1999, Mining longest repeating subsequences to predict WWW surfing, In: Proceedings of the 1999 USENIX User Annual Technical Conference, 139–150.Google Scholar
  100. Pohl, W.: 1996, Learning about the User Modeling and Machine Learning, In: V. Moustakis, J. Herrmann (ed.), International Conference onMachine LearningWorkshopMachine Learning meets Human-Computer Interaction, pp. 29–40.Google Scholar
  101. Pretschner, A. and Gauch, S.: 1999, Personalization on the web. Technical Report, Information and TelecommunicationTechnology Center,D epartment of Electrical Engineering and Computer Science,The University of Kansas.Google Scholar
  102. Quinlan, J. R.: 1993, C4.5: Programs forMachine Learning. SanMateo.CA.: Morgan Kaufmann.Google Scholar
  103. Salton, G.: 1989, Automatic Text Processing. Addison-Wesley.Google Scholar
  104. Sarukkai, R. R.: 2000, Link Prediction and Path Analysis Using Markov Chains, In: Proceedings of the 9thWorld Wide Web Conference. Amsterdam.Google Scholar
  105. Schafer, B., Konstan, J. A. and Riedl, J.: 2001, E-commerce Recommendation Applications, Data Mining and Knowledge Discovery, 5(1-2), 115–152, Kluwer Academic Publishers.Google Scholar
  106. Schwarzkopf, E.: 2001, An adaptive web site for the UM2001 conference, In: Proceedings of the UM2001Workshop on Machine Learning for User Modeling, pp. 77–86.Google Scholar
  107. Shahabi, C., Zarkesh, A. M., Abidi, J. and Shah, V.: 1997, Knowledge discovery fromuser’s Webpage navigation, In: Proceedings of the 7th IEEE Intlernational Workshop on Research Issues in Data Engineering (RIDE), pp. 20–29.Google Scholar
  108. Shahabi, C., Banaei-Kashani, F. and Faruque, J.: 2001, A Reliable, Efficient, and Scalable System for Web Usage Data Acquisition, In: WebKDD’01Workshop in conjunction with the ACMSIGKDD 2001, San Francisco, CA, August.Google Scholar
  109. Shen, W. M.: 1996, An Efficient Algorithm for Incremental Learning of Decision Lists Technical Report, USC-ISI-96-012, Information Sciences Institute, University of Southern California.Google Scholar
  110. Spiliopoulou, N. and Faulstich, L. C.: 1998, WUM: AWeb Utilization Miner, In: International Workshop on theWeb and Databases, Valencia, Spain, Springer LNCS 1590, 109–115.Google Scholar
  111. Spiliopoulou, M.: 1999, Tutorial: Data Mining for theWeb. PKDD’99. Prague,Cz ech Republic.Google Scholar
  112. Spiliopoulou, M., Faulstich, L. C. and Wilkler, K.: 1999a, A data miner analyzing the navigational behavior of Web users, In: Proceedings of theWorkshop on Machine Learning in User Modeling of the ACAI99, Chania, Greece, 54–64.Google Scholar
  113. Spiliopoulou, M., Pohle, C. and Faulstich, L. C.: 1999b, Improving the effectiveness of a web site with Web usage mining, In: Proceedings of the 1999 KDD Workshop on Web Mining, San Diego CA, Springer-Verlag.Google Scholar
  114. Srivastava, J., Cooley, R., Deshpande, M. and Tan, P. T.: 2000,Web UsageMining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explorations, 1(2), 12–23.Google Scholar
  115. Tan, P. N. and Kumar, V.: 2002, Discovery of Web Robot Sessions Based on their Navigational Patterns, Data Mining and Knowledge Discovery, 6(1), 9–35.CrossRefMathSciNetGoogle Scholar
  116. Tauscher, L. and Greenberg, S.: 1997, How People Revisit Web Pages: Empirical Findings and Implications for the Design of History Systems, International Journal of Human Computer Studies, Special issue on World Wide Web Usability, 47(1), 97–138.CrossRefGoogle Scholar
  117. Theodoridis, S. and Koutroubas, K.: 1999, Pattern Recognition. Academic Press.Google Scholar
  118. Utgoff, P. E.: 1988, ID5: An incremental ID3, In Proceedings of the 5th International Conference on Machine Learning, pp. 107–120, San Mateo, CA, Morgan Kaufman.Google Scholar
  119. Webb, G. I., Pazzani, M. J. and Billsus, D.: 2001, Machine Learning for User Modeling, User Modeling and User-Adapted Interaction, 11, 19–29, Kluwer.CrossRefGoogle Scholar
  120. Wexelblat, A. and Maes, P.: 1997, Footprints: History-richWeb browsing, In: Proceedings Conference Computer-Assisted Information Retrieval (RIAO), pp. 75–84.Google Scholar
  121. Widmer, G. and Kubat, M.: 1996, Learning in the presence of concept drift and hidden contexts, Machine Learning, 23(2), 69–101.Google Scholar
  122. Wu, K., Yu, P. S. and Ballman, A.: 1998, Speedtracer:AWeb usage mining and analysis tool, IBM Systems Journal, 37(1), 89–105.Google Scholar
  123. Wu, X.: 1993, TheHCV Induction Algorithm, In: Proceedings of the 21st ACMComputer Science Conference, ACM Press, pp. 169–175.Google Scholar
  124. Yan, T. W., Jacobsen, M., Garcia-Molina, H. and Dayal, U.: 1996, FromUserAccess Patterns to Dynamic Hypertext Linking,W WW5/Computer Networks 28(7-11), pp. 1007–1014.Google Scholar
  125. Zhang, T., Ramakrishnan, R. and Livny, M.: 1996, BIRCH: an e?cient data clustering method for very large databases, In: Proceedings ACM-SIGMOD International Conference in Management of Data, Montreal, Canada, pp. 103–114.Google Scholar
  126. Zhu, T.: 2001, Using Markov Chains for Structural Link Prediction in AdaptiveWeb Sites, UM 2001, LNAI 2109, 298–300.Google Scholar
  127. Zukerman, I., Albrecht, D. W. and Nicholson, A. E.: 1999, Predicting users’ requests on the www, In: Proceedings of the Seventh International Conference on User Modeling,Banff, Canada, pp. 275–284.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Dimitrios Pierrakos
    • 1
  • Georgios Paliouras
    • 1
  • Christos Papatheodorou
    • 2
  • Constantine D. Spyropoulos
    • 1
  1. 1.Institute of Informatics and Telecommunications, NCSR ‘Demokritos’Ag. ParaskeviGreece
  2. 2.Department of Archive and Library SciencesIonian UniversityCorfuGreece

Personalised recommendations