Positivity

, Volume 7, Issue 3, pp 225–234 | Cite as

Interpolation of Classical Lorentz Spaces1

  • Joan Cerdà
  • Heribert Coll
Article

Abstract

We describe the K-functional and identify the real interpolated spaces of general quasi–Banach couples of classical Lorentz spaces. Applications are given which include interpolation of spaces of Lorentz–Zygmund type.

Interpolation Lorentz space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergh, J. and Löfström, J.: Interpolation Spaces, Springer, Berlin, 1976.Google Scholar
  2. 2.
    Bennet, C. and Sharpley, R.: Interpolation of Operators, Academic Press, Boston, MA, 1988.Google Scholar
  3. 3.
    Brudnyi, Yu.A. and Krugljak, N.Ya.: Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam, 1991.Google Scholar
  4. 4.
    Brudnyi, Yu.A. and Shteinberg, A. Calderón Couples of Lipschitz Spaces, J. Functional Anal. 131 (1995), 459–498.Google Scholar
  5. 5.
    Carro, M.J. and Soria, J.: Weighted Lorentz Spaces and the Hardy Operator, J. Functional Anal. 112 (1993), 480–494.Google Scholar
  6. 6.
    Cerdà, J. and Coll, H.: Interpolation of Lorentz spaces, the diagonal case, in ‘Functional spaces, Differential Operators and Nonlinear Analysis’ (FSDONA–99), Mathematical Institute of the Czech Republic, Praha 2000, pp. 41–47.Google Scholar
  7. 7.
    Cerdà, J. and Martín, J.: Interpolation of operators on Decreasing Functions, Math. Scand. 78 (1996), 233–245.Google Scholar
  8. 8.
    Cerdà, J. and Martín, J.: Interpolation restricted to decreasing functions and Lorentz spaces, Proc. Edinburgh Math. Soc. 42 (1999), 243–256.Google Scholar
  9. 9.
    Cerdà, J. and Martín, J.: Calderón couples of Lorentz spaces, Math. Nachr. 221 (2001), 5–18.Google Scholar
  10. 10.
    Cwikel, M.: Monotonicity properties of interpolation spaces, II, Arkiv. Mat. 19 (1981), 123–136.Google Scholar
  11. 11.
    Edmunds, D.E., Gurka, P. and Opic, B.: Sharpness of embedding in logarithmic Bessel-Potencial spaces, Proc. Roy. Soc. Edin. 126A (1996), 995–1009.Google Scholar
  12. 12.
    Gilbert, J.E.: Interpolation between weighted Lp spaces, II, Arkiv. Mat. 19 (1981), 123–136.Google Scholar
  13. 13.
    Krein, S.G., Petunin, Yu.I. and Semenov, E.M.: Interpolation of Linear Operators, Transl.Math. Monogr. Amr. Math. Soc. 54, Providence, 1982.Google Scholar
  14. 14.
    Maligranda, L.: The K-functional for symmetric spaces, Lecture Notes in Math. 1070 (1984), 169–182.Google Scholar
  15. 15.
    Maligranda, L. and Persson, L.E.: Real Interpolation between Weighted Lp and Lorentz Spaces, Bull. Polish Acad. Sci. Math 35 (1987), 765–778.Google Scholar
  16. 16.
    Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov Spaces, Lecture Notes in Math. 1070 (1984), 183–201.Google Scholar
  17. 17.
    Milman, M.: Interpolation of operators of Mixed Weak-Strong Type between Rearrangement Invariant Spaces, Indiana Univ. Math. J. 28 (1979), 985–992.Google Scholar
  18. 18.
    Persson, L.E.: Interpolation with a parameter function, Math. Scand. 59 (1986), 199–222.Google Scholar
  19. 19.
    Raynaud, Y.: On Lorentz–Sharpley Spaces, IsraelMath. Conf. Proc. 5 (1992), 207–228.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Joan Cerdà
    • 1
  • Heribert Coll
    • 1
  1. 1.Department de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations