Biotechnology Letters

, Volume 25, Issue 21, pp 1787–1794 | Cite as

Phytase enzymology, applications, and biotechnology

  • Xin Gen Lei
  • Jesús M. Porres


Phytases are phosphohydrolases that initiate the step-wise removal of phosphate from phytate. These enzymes have been widely used in animal feeding to improve phosphorus nutrition and to reduce phosphorus pollution of animal waste. The potential of phytases in improving human nutrition of essential trace minerals in plant-derived foods is being explored. This review covers the basic biochemistry and application of phytases, and emphasizes the emerging biotechnology used for developing new effective phytases with improved properties.

biotechnology environmental pollution mineral nutrition phytase phytic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baur X, Melching-Kollmuss S, Koops F, Straßburger K, Zober A (2002) IgE-mediated allergy to phytase-a new animal feed additive. Allergy 57: 943–945.CrossRefPubMedGoogle Scholar
  2. Bentley ME, Caulfield LE, Ram M, Santizo MC, Hurtado E, Rivera JA, Ruel MT, Brown KH (1997) Zinc supplementation affects the activity patterns of rural Guatemalan infants. J. Nutr. 127: 1333–1338.PubMedGoogle Scholar
  3. Biehl RR, Baker DH, Delucca HF (1995) 1—Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese utilization in chicks fed soy-based diets. J. Nutr. 125: 2407–2416.PubMedGoogle Scholar
  4. Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 13: 297–336.Google Scholar
  5. Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Prot. Chem. 20: 287–292.Google Scholar
  6. Dao TH (2003) Polyvalent cation effects on myo-inositol hexakis dihydrogenphosphate enzymatic dephosphorylation in dairy wastewater. J. Environ. Qual. 32: 694–701.PubMedGoogle Scholar
  7. Doekes G, Kamminga N, Helwegen L, Heederik D (1999) Occupational IgE sensitisation to phytase, a phosphate derived from Aspergillus niger. Occup. Environ. Med. 56: 454–459.PubMedGoogle Scholar
  8. Ferguson EL, Gibson RS, Thompson LU, Ounpuu S (1989) Dietary calcium, phytate, and zinc intakes and the calcium, phytate, and zinc molar ratios of the diets of a selected group of East African children. Am. J. Clin. Nutr. 50: 1450–1456.PubMedGoogle Scholar
  9. Fleming DJ, Tucker KL, Jacques PF, Dallal GE, Wilson PWF, Wood RJ (2002) Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am. J. Clin. Nutr. 76: 1375–1384.PubMedGoogle Scholar
  10. Fredrikson M, Biot P, Larsson Alminger M, Carlsson NG, Sandberg AS (2001) Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J. Agric. Food Chem. 49: 1208–1212.PubMedGoogle Scholar
  11. Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001a) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat. Biotechnol. 19: 429–433.PubMedGoogle Scholar
  12. Golovan SP, Meidinger R, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hackler RR, Phillips JP, Forsberg CW (2001b) Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19: 741–745.PubMedGoogle Scholar
  13. Golovan SP, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol. 46: 59–71.PubMedGoogle Scholar
  14. Greiner R (2002) Purification and characterization of three phytases from germinated lupine seeds (Lupinus albus var. Amiga). J. Agric. Food Chem. 50: 6858–6864.PubMedGoogle Scholar
  15. Greiner R, Konietzny U (1996) Construction of a bioreactor to produce special breakdown products of phytate. J. Biotechnol. 48: 153–159.PubMedGoogle Scholar
  16. Greiner R, Konietzny U (1999) Improving enzymatic reduction of myo-inositol phosphates with inhibitory effects on mineral absorption in black beans (Phaseolus vulgaris var. preto). J. Food Process Pres. 23: 249–261.Google Scholar
  17. Greiner R, Larsson Alminger M(1999) Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). J. Sci. Food Agric. 79: 1453–1460.Google Scholar
  18. Greiner R, Carlsson NG, Larsson Alminger M (2000a) Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. J. Biotechnol. 84: 53–62.Google Scholar
  19. Greiner R, Jany K-D, Larsson Alminger M (2000b) Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from Barley (Hordeum vulgare). J. Cer. Sci. 31: 127–139.Google Scholar
  20. Greiner R, Konietzny U, Jany KLD (1993) Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303: 107–113.Google Scholar
  21. Greiner R, Larsson Alminger M, Carlsson N, Muzquiz M, Burbano C, Cuadrado C, Pedrosa M, Goyoaga C (2002) Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. J. Agric. Food Chem. 50: 6865–6870.PubMedGoogle Scholar
  22. Ha NC, Oh BC, Shin S, Kim HJ, Oh TK, Kim YO, Choi KY, Oh BH (2000) Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat. Struct. Biol. 7: 147–153.PubMedGoogle Scholar
  23. Han YM, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys. 364: 83–90.PubMedGoogle Scholar
  24. Han YM, Roneker KR, Pond WG, Lei XG (1998) Adding wheat middlings, microbial phytase, and citric acid to corn-soybean meal diets for growing pigs may replace inorganic phosphorus supplementation. J. Anim. Sci. 76: 2649–2656.PubMedGoogle Scholar
  25. Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant. Soil 220: 165–174.Google Scholar
  26. Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol. 126: 1598–1608.PubMedGoogle Scholar
  27. Honke J, Kozlowska H, Vidal-Valverde C, Frias J, Górecky R (1998) Changes in quantities of inositol phosphates during maturation and germination of legume seeds. Z. Lebensm. Unters. Forsch. A 206: 279–283.Google Scholar
  28. Igbasan FA, Männer K, Miksch G, Borriss R, Farouk A, Simon O (2000) Comparative studies on the in vitro properties of phytases from various microbial origins. Arch. Anim. Nutr. 53: 353–373.Google Scholar
  29. Jermutus L, Tessier M, Pasamontes L, Van Loon APGM (2001) Structure-based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case. J. Biotechnol. 85: 15–24.PubMedGoogle Scholar
  30. Jongbloed, AW, Mroz Z, van der Weij-Jongbloed R, Kemme PA (2000) The effects of microbial phytase, organic acids and their interactions in diets for growing pigs. Livest. Prod. Sci. 67: 113–122.Google Scholar
  31. Kemme PA, Jongbloed AW, Mroz Z, Beynen AC (1997) The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J. Anim. Sci. 75: 2129–2138.PubMedGoogle Scholar
  32. Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett. Appl. Microbiol. 30: 325–329.PubMedGoogle Scholar
  33. Kerovuo J, Lauraeus M, Nurminem P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64: 2079–2085.PubMedGoogle Scholar
  34. Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochem. J. 352: 623–628.PubMedGoogle Scholar
  35. Kim Y, Kim HK, Bae KS, Yu JH, Oh T (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol. 22: 2–7.Google Scholar
  36. Kostrewa D, Grüninger-Leitch F, D'Arcy A, Broger C, Mitchell D, Van Loon APGM (1997) Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat. Struc. Biol. 4: 185–190.Google Scholar
  37. Kostrewa D, Wyss M, D'Arcy A, Van Loon APGM (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 Å resolution. J. Mol. Biol. 288: 965–974.PubMedGoogle Scholar
  38. Lassen SF, Breinholt J, Østergaard PR, Brugger R, Bischoff A, Wyss M, Fuglsang CC (2001) Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Appl. Environ. Microbiol. 67: 4701–4707.PubMedGoogle Scholar
  39. Lehmann M, Kostrewa D, Wyss M, Brugger R, D'Arcy A, Pasamontes L, Van Loon APGM (2000a) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13: 49–57.PubMedGoogle Scholar
  40. Lehmann M, Lopez-Ulibarri R, Loch C, Viarouge C, Wyss M, Van Loon APGM (2000b) Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci. 9: 1866–1872.PubMedGoogle Scholar
  41. Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. 57: 474–481.PubMedGoogle Scholar
  42. Lei XG, Ku PK, Miller ER, Ullrey DE, Yokoyama MT (1993a) Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123: 1117–1123.PubMedGoogle Scholar
  43. Lei XG, Ku PK, Miller ER, Yokoyama MY (1993b) Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs. J. Anim. Sci. 71: 3359–3367.PubMedGoogle Scholar
  44. Lei XG, Ku PK, Miller ER, Yokoyama MT, Ullrey DE (1994) Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J. Anim. Sci. 72: 139–143.PubMedGoogle Scholar
  45. Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant. Physiol. 114: 1103–1111.PubMedGoogle Scholar
  46. Lim D, Golovan S, Forsberg C, Jia Z (2000) Crystal structures of Escherichia coli phytase and its complex with phytase. Nat. Struct. Biol. 7: 108–113.PubMedGoogle Scholar
  47. Liu J, Bollinger DW, Ledoux DR, Ellersieck MR, Veum TL (1997) Soaking increases the efficacy of supplemental microbial phytase in a low-phosphorus corn-soybean meal diet for growing pigs. J. Anim. Sci. 75: 1292–1298.PubMedGoogle Scholar
  48. Lönnerdal B, Bell JG, Hendrickx AG, Burns RA, Keen CL (1988) Effect of phytate removal on zinc absorption from soy formula. Am. J. Clin. Nutr. 48: 1301–1306.PubMedGoogle Scholar
  49. Lönnerdal B, Jayawickrama L, Lien EL (1999) Effect of reducing phytate content and of partially hydrolyzing the protein in soy formula on zinc and copper absorption and status in infant rhesus monkeys and rat pups. Am. J. Clin. Nutr. 69: 490–496.PubMedGoogle Scholar
  50. Lucca P, Hurrel R, Potrykus I (2001) Approaches to improving the bioavailability and level of iron in rice seeds. Theor. Appl. Genet. 102: 392–397.Google Scholar
  51. Maenz DD, Engele-Schaan CM, Newkirk RW, Classen HL (1999) The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed Sci. Technol. 81: 177–192.Google Scholar
  52. Manary MJ, Krebs NF, Gibson RS, Broadhead RL, Hambridge KM (2002) Community-based dietary phytate reduction and its effect on iron status in Malawian children. Ann. Trop. Paediatr. 22: 133–136.PubMedGoogle Scholar
  53. Maugenest S, Martinez I, Lescure A (1997) Cloning and characterization of a c-DNA encoding a maize seedling phytase. Biochem. J. 322: 511–517.PubMedGoogle Scholar
  54. Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AHJ (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem. Biophys. Res. Commun. 297: 1016–1020.PubMedGoogle Scholar
  55. Nelson T, Shieh TR, Wodzinski RJ, Ware JH (1971) Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 101: 1289–1293.PubMedGoogle Scholar
  56. Ohri-Vachaspati P, Swindale AJ (1999) Iron in the diets of rural Honduran women and children. Ecol. Food Nutr. 38: 285–306.Google Scholar
  57. Ostanin K, Van Etten RL (1993) Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J. Biol. Chem. 268: 20778–20784.PubMedGoogle Scholar
  58. Ostanin K, Harms EH, Stevis PE, Kuciel R, Zhou M, Van Etten RL (1992) Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J. Biol. Chem. 267: 22830–22836.PubMedGoogle Scholar
  59. Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour. Technol. 77: 203–214.PubMedGoogle Scholar
  60. Porres JM, Etcheverry P, Miller DD, Lei XG (2001) Phytase and citric acid supplementation in whole-wheat bread improves phytate-phosphorus release and iron dialyzability. J. Food Sci. 66: 614–619.Google Scholar
  61. Porres JM, Stahl CH, Cheng WH, Fu YX, Roneker KR, Pond WG, Lei XG (1999) Dietary intrinsic phytate protects colon from lipid peroxidation in pigs with moderately high iron intake. Proc. Soc. Exp. Biol. Med. 221: 80–86.PubMedGoogle Scholar
  62. Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv. Food Res. 28: 1–92.PubMedGoogle Scholar
  63. Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant. J. 25: 641–649.PubMedGoogle Scholar
  64. Rodriguez E, Mullaney E, Lei XG (2000a) Expression of the Aspergillus fumigatus gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem. Biophys. Res. Comm. 268: 373–378.PubMedGoogle Scholar
  65. Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000b) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105–112.PubMedGoogle Scholar
  66. Rodriguez E, Porres JM, Han Y, Lei XG (1999) Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-ppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 365: 262–267.PubMedGoogle Scholar
  67. Sandberg AS, Larsen T, Sandström B (1993) High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet. J. Nutr. 123: 559–566.PubMedGoogle Scholar
  68. Sandberg AS, Rossander L, Türk M (1996) Dietary Aspergillus niger phytase increases iron absorption in humans. J. Nutr. 126: 476–480.PubMedGoogle Scholar
  69. Sands JS, Ragland D, Wilcox JR, Adeola O (2003) Relative bioavailability of phosphorus in low-phytate soybean meal for broiler chicks. Can. J. Anim. Sci. 83: 95–100.Google Scholar
  70. Stahl CH, Han YM, Roneker KR, House WA, Lei XG (1999) Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J. Anim. Sci. 77: 2135–2142.PubMedGoogle Scholar
  71. Stahl CH, Wilson DB, Lei XG (2003) Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol. Lett. 25: 827–831.PubMedGoogle Scholar
  72. Tatala S, Svanberg U, Mduma B (1998) Low dietary iron availability is a major cause of anemia: a nutrition survey in the Lindi district of Tanzania. Am. J. Clin. Nutr. 68: 171–178.PubMedGoogle Scholar
  73. Tomschy A, Tessier M, Wyss M, Brugger R, Broger C, Schnoebelen L, Van Loon APGM, Pasamontes M (2000) Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Protein Sci. 9: 1304–1311.PubMedGoogle Scholar
  74. Ullah AHJ, Phillippy BQ (1994) Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myo-inositol phosphates. J. Agric. Food Chem. 42: 423–425.Google Scholar
  75. Ullah AHJ, Sethumadhavan K, Lei XG, Mullaney EJ (2000) Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA). Biochem. Biophys. Res. Commun. 275: 279–285.PubMedGoogle Scholar
  76. Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem. Biophys. Res. Commun. 290: 1343–1348.PubMedGoogle Scholar
  77. Van Etten RL (1982) Human prostatic acid phosphatase: a histidine phosphatase. Ann. NY Acad. Sci. 390: 27–51.PubMedGoogle Scholar
  78. Van Hartingsveldt W, Van Zeijl CMJ, Harteveld M, Gouka RJ, Suykerbuyk MEG, Luiten RGM, Van paridon PA, Selten GCM, Veenstra AE, Van Gorcom RFM, Van den Hondel CAMJJ (1993) Cloning, characterization and overexpression of the phytaseencoding gene (phyA) of Aspergillus niger. Gene 127: 87–94.PubMedGoogle Scholar
  79. Veum TL, Ledoux DR, Raboy V, Ertl DS (2001) Low-phytic acid corn improves nutrient utilization for growing pigs. J. Anim. Sci. 79: 2873–2880.PubMedGoogle Scholar
  80. Vincent JB, Crowder MW, Averill BA (1992) Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem. Sci. 17: 105–110.PubMedGoogle Scholar
  81. Wyss M, Brugger R, Kronenberger A, Rémy R, Fimbel R, Oesterhelt G, Lehmann M, Van Loon APGM (1999a) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl. Environ. Microbiol. 65: 367–373.PubMedGoogle Scholar
  82. Wyss M, Pasamontes L, Friedlein A, Rémy R, Tessier M, Kronenberger A, Middendorf A, Lehmann A, Scnoebelen L, Röthlisberger U, Kusznir E, Wahl G, Müller F, Lahm HW, Vogel K, Van Loon APGM (1999b) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65: 359–366.PubMedGoogle Scholar
  83. Wyss M, Pasamontes L, Rémy R, Kohler J, Kusznir E, Gadient M, Müller F, Van Loon APGM (1998) Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64: 4446–4451.PubMedGoogle Scholar
  84. Xavier EG, Cromwell GL, Lindemann MD (2003) Phytase addtions to conventional orlow-phytate corn-soybean mea diets on phosphorus balance in growing pigs. J. Anim. Sci. 81 (Suppl. 1): 258.Google Scholar
  85. Yi Z, Kornegay ET, Ravindran V, Denbow DM (1996) Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poultry Sci. 75: 240–249.Google Scholar
  86. Zyla K, Ledoux DR, Veum TL (1995) Complete enzymatic dephosphorilation of corn-soybean meal feed under simulated intestinal conditions of the turkey. J. Agric. Food Chem. 43: 288–294.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Animal ScienceCornell UniversityIthacaUSA
  2. 2.Departamento de Fisiología, Instituto de NutriciónUniversidad de GranadaGranadaSpain

Personalised recommendations