The Ramanujan Journal

, Volume 7, Issue 1–3, pp 49–61

On Borcherds Products Associated with Lattices of Prime Discriminant

  • Jan Hendrik Bruinier
  • Michael Bundschuh
Article

Abstract

We show that certain spaces of vector valued modular forms are isomorphic to spaces of scalar valued modular forms whose Fourier coefficients are supported on suitable progressions.

As an application we give a very explicit description of Borcherds products on Hilbert modular surfaces.

Weil representation Borcherds product Hilbert modular surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Borcherds, “Automorphic forms with singularities on Grassmannians,” Invent. Math. 132 (1998), 491-562.Google Scholar
  2. 2.
    R.E. Borcherds, “The Gross-Kohnen-Zagier theorem in higher dimensions,” Duke Math. J. 97 (1999), 219-233.Google Scholar
  3. 3.
    J.H. Bruinier, “Borcherds products on O(2, l) and Chern classes of Heegner divisors,” Springer Lecture Notes in Mathematics 1780, Springer-Verlag (2002).Google Scholar
  4. 4.
    J.H. Bruinier, “Borcherds products and Chern classes of Hirzebruch-Zagier divisors,” Invent. Math. 138 (1999), 51-83.Google Scholar
  5. 5.
    F. Diamond and J. Im, “Modular forms and modular curves,” Canadian Mathematical Society Conference Proceedings 17 (1995), 39-133.Google Scholar
  6. 6.
    M. Eichler and D. Zagier, “The theory of Jacobi forms,” Progress in Math. 55 (1985), Birkhäuser.Google Scholar
  7. 7.
    E. Freitag, Hilbert Modular Forms, Springer-Verlag (1990).Google Scholar
  8. 8.
    G. van der Geer, Hilbert Modular Surfaces, Springer Verlag (1988).Google Scholar
  9. 9.
    K.-B. Gundlach, “Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers ℚ?(5),”Math. Annalen 152 (1963), 226-256.Google Scholar
  10. 10.
    E. Hecke, “Analytische Arithmetik der positiv definiten quadratischen Formen,” Kgl. Danske Vid. Selskab. Math. fys. Med. XIII 12 (1940), Werke, 789-918.Google Scholar
  11. 11.
    A. Krieg, “The Maass spaces on the Hermitean half-space of degree 2,” Math. Ann. 289 (1991), 663-681; “Gruppen SL2(Zp), insbesondere SL2(Z2). I. Teil,” Comment Math. Helvetici 51 (1976), 465-489.Google Scholar
  12. 12.
    T. Oda, “On modular forms associated with indefinite quadratic forms of signature (2, n ? 2),” Math. Ann. 231 (1977), 97-144.Google Scholar
  13. 13.
    A. Ogg, “Survey of modular functions of one variable,” in Modular Functions of One Variable I, Lecture Notes in Mathematics 320 (1973), 1-36, Springer-Verlag.Google Scholar
  14. 14.
    T. Shintani, “On construction of holomorphic cusp forms of half integral weight,” Nagoya Math. J. 58 (1975), 83-126.Google Scholar
  15. 15.
    N. Skoruppa, “ Ñber den Zusammenhang zwischen Jacobiformen und Modulformen halb-ganzen Gewichts,” Bonner Mathematische Schriften 159 (1985), Universität Bonn.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jan Hendrik Bruinier
    • 1
  • Michael Bundschuh
    • 2
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadison
  2. 2.Mathematisches InstitutUniverstität HeidelbergHeidelbergGermany

Personalised recommendations