Journal of Chemical Ecology

, Volume 29, Issue 10, pp 2263–2279 | Cite as

Correlation Between Phytotoxicity on Annual Ryegrass (Lolium rigidum) and Production Dynamics of Allelochemicals Within Root Exudates of an Allelopathic Wheat

  • Zhiqun Huang
  • Terry Haig
  • Hanwen Wu
  • Min An
  • Jim Pratley


An improved allelopathic correlation between phytotoxicity measured in root growth bioassay upon annual ryegrass (Lolium rigidum Gaud.) and the concentrations of a selection of dynamically produced allelochemicals quantified in the root exudates of cv. Khapli wheat (Triticum turgidum ssp. durum (Desf.) Husn.) monitored during the first 15 days of wheat seedling growth in a sterile, agar–water medium, has been established. Changes over the 15-day growth period in the quantities of five exuded benzoxazinones and seven phenolic acids were measured simultaneously using GC/MS/MS. Substantiating pure compound dose–response measurements were conducted over a range of concentrations for the putative allelochemicals within the wheat exudates. One synergism-based proposal using the monitored compounds to explain the observed low-exudate-concentration phytotoxicity was explored, but was found to be experimentally inadequate.

Allelopathic correlation wheat root exudate production dynamics benzoxazinones phenolic acids allelochemicals synergism GC/MS/MS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argandona, V. H., Niemeyer, H. M., and Corcuera, L. J. 1981. Effect of content and distribution of hydroxamic acids in wheat on infestation by the aphid Schizaphis gramimum. Phytochemistry 20:673–676.Google Scholar
  2. Asplund, R. O. 1969. Some quantitative aspects of phytotoxicity of monoterpenes. Weed Sci. 17:454–455.Google Scholar
  3. Baghestani, A., Lemieux, C., Leroux, G. D., Baziramakenga, R., and Simard, R. R. 1999. Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci. 47:498–504.Google Scholar
  4. Belz, R. and Hurle, K. 2001. Tracing the source—Do allelochemicals in root exudates of wheat correlate with cultivar-specific weed-suppressing ability? Brighton Crop Protect. Conf. Weeds 2001 4D–4:317–320.Google Scholar
  5. Ben-Hammouda, M., Kremer, R. J., Minor, H. C., and Sarwar, M. 1995. A chemical basis for differential potential of sorghum hybrids on wheat. J. Chem. Ecol. 21:775–786.Google Scholar
  6. Blum, U., Gerig, T. M., Worsham, A. D., Holappa, L. D., and King, L. D. 1992. Allelopathy activity in wheat-conventional and wheat-no-till soils: Development of soil extract bioassays. J. Chem. Ecol. 18:2191–2221.Google Scholar
  7. Blum, U., Schafer, S. R., and Lehman, M. E. 1999. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. experimental model. Crit. Rev. Plant Sci. 18:673–693.Google Scholar
  8. Burgos, N. R., Talbert, R. E., and Mattice, J. D. 1999. Cultivar and age differences in the production of allelochemicals by Secale cereale. Weed Sci. 47:481–485.Google Scholar
  9. Copaja, S. V., Nicol, D., and Wratten, S. D. 1999. Accumulation of hydroxamic acids during wheat germination. Phytochemistry 50:17–24.Google Scholar
  10. Copaja, S. V., Niemeyer, H. M., and Wratten, S. D. 1991. Hydroxamic acid levels in Chilean and British wheat seedlings. Ann. App. Biol. 118:223–227.Google Scholar
  11. Eljarrat, E. and Barcelo, D. 2001. Sample handling and analysis of allelochemical compounds in plants. Trends Anal. Chem. 20:584–590.Google Scholar
  12. Fay, P. K. and Duke, W. B. 1977. An assessment of allelopathic potential in Avena germ plasm. Weed Sci. 25:224–228.Google Scholar
  13. Friebe, A. 2001. Role of benzoxazinones in cereals. J. Crop Prod. 4:379–400.Google Scholar
  14. Guenzi, W. D. and Mccalla, T. M. 1966. Phenolic acids in oats, wheat, sorghum, and corn residues and their phytotoxicity. Agron. J. 58:303–304.Google Scholar
  15. Hashimoto, Y. and Shudo, K. 1996. Chemistry of biologically active benzoxazinoids. Phytochemistry 43:551–559.Google Scholar
  16. Kobayashi, A., Kim, M. J., and Kawazu, K. 1996. Uptake and exudation of phenolic compounds by wheat and antimicrobial components of the root exudate. Z. Naturf. 51c:527–533.Google Scholar
  17. Korableva, N. P., Morozova, E. V., Popova, L. V., and Metlitskii, L. V. 1969. Specific growth inhibitors in connection with dormancy and immunity in plants. Dok. Akad. Nauk SSSR 184:979–981.Google Scholar
  18. Liebl, R. A. and Worsham, A. D. 1983. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol. 9:1027–1043.Google Scholar
  19. Lodhi, M. A. K., Bilal, R., and Malik, K. A. 1987. Allelopathy in agroecosystems: Wheat phytotoxicity and its possible roles in crop rotation. J. Chem. Ecol. 13:1881–1891.Google Scholar
  20. Lyon, T. L. and Wilson, J. K. 1921. Liberation of organic matter by roots of growing plants. Cornell Univ. Agric. Exp. Stn. Mem. 40.Google Scholar
  21. Macias, F. A., Marin, D., Castellano, D., Velasco, R. F., Oliveros-Bastidas, A., Chinchilla, D., and Molinillo, M. G. 2002. Synthesis and bioactivity evaluation of hydroxamic acids. P-107, III World Cong. Allelop, Tsukuba, Japan, Aug. 26–30. Abstracts, p. 250.Google Scholar
  22. Nakagawa, E., Amano, T., Hirai, N., and Iwamura, H. 1995. Non-induced cyclic hydroxamic acids in wheat during juvenile stage of growth. Phytochemistry 38:1349–1354.Google Scholar
  23. Nicol, D., Copaja, S. V., Wratten, S. D., and Niemeyer, H. M. 1992. A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Ann. App. Biol. 121:11–18.Google Scholar
  24. Niemeyer, H. and Perez, F. 1995. Potential of hydroxamic acids in the control of cereal pests, diseases, and weeds, chap. 19, in Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series 582 Washington, DC.Google Scholar
  25. Perez, F. J. and Ormeno-Nunez, J. 1991. Difference in hydroxamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy. J. Chem. Ecol. 17:1037–1043.Google Scholar
  26. Petho, M. 1992. Occurrence and physiological role of benzoxazinones and their derivatives IV. Isolation of hydroxamic acids from wheat and rye root secretions. Plant Physiol. Agrochem. 41:167–175.Google Scholar
  27. Preston, W. H., Jr., Mitchell, J. W., and Reevf, W. 1954. Movement of alpha-methoxyphenylacetic acid from one plant to another through their root systems. Science 119:437–438.Google Scholar
  28. Rasmussen, J. A. and Einhellig, F. A. 1979. Inhibitory effects of combinations of three phenolic acids on grain sorghum germination. Plant Sci. Lett. 14:69–74.Google Scholar
  29. Rovira, A. D. 1969. Plant root exudates. Bot. Rev. 35:35–59.Google Scholar
  30. Schulz, M., Friebe, A., Kuck, P., Seipel, M., and Schnabl, H. 1994. Allelopathic effects of living quackgrass (Agropyron repens L.). Identification of inhibitory allelochemicals exuded from rhizome borne roots. Angew. Bot. 68:195–200.Google Scholar
  31. Sharma, M. P., Qureshi, F. A., and Vandenborn, W. H. 1982. The basis for synergism between barban and flamprop on wild oat (Avena fatua). Weed Sci. 30:147–152.Google Scholar
  32. Simpson, D. M. and Stoller, E. W. 1996. Physiological mechanisms in the synergism between thifensulfuron and imazethapyr in Sulfonylurea-tolerant soybean (Glycine max). Weed Sci. 44:209–214.Google Scholar
  33. Vancura, V. 1964. Root exudates of plants I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil 21:231–248.Google Scholar
  34. Woodward, M. D., Corcuera, L. J., Helgeson, J. P., and Upper, C. D. 1978. Decomposition of 2,4–dihydroxy-7–methoxy-(2H)-1,4–benzoxazin-3(4H)-one in aqueous solutions. Plant Physiol. 61:796–802.Google Scholar
  35. Woodward, M. D., Corcuera, L. J., Schnoes, H. K., Helgeson, J. P., and Upper, C. D. 1979. Identification of 1,4–benzoxazin-3–ones in maize extracts by gas–liquid chromatography and mass spectrometry. Plant Physiol. 63:9–13.Google Scholar
  36. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 1999. Simultaneous determination of phenolic acids and 2,4–dihydroxy-7–methoxy-1,4–benzoxazin-3–one in wheat (Triticum aestivum) by gas chromatography–tandem mass spectrometry. J. Chromatogr. A 864:315–321.Google Scholar
  37. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 2000a. Distribution and exudation of allelochemicals in wheat (Triticum aestivum). J. Chem. Ecol. 26:2141–2154.Google Scholar
  38. Wu, H., Pratley, J., Lemerle, D., and Haig, T. 2000b. Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust. J. Agric. Res. 51:259–266.Google Scholar
  39. Wu, H., Pratley, J., Lemerle, D., and Haig, T. 2000c. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust. J. Agric. Res. 51:937–944.Google Scholar
  40. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 2001a. Allelochemicals in wheat (Triticum aestivum L.): Variation of phenolic acids in shoot tissues. J. Chem. Ecol. 27:125–135.Google Scholar
  41. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 2001b. Allelochemicals in wheat (Triticum aestivum L.): Cultivar difference in the exudation of phenolic acids. J. Agric. Food Chem. 49:3742–3745.Google Scholar
  42. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 2001c. Production and exudation of 2,4–dihydroxy-7–methoxy-1,4–benzoxazin-3–one. J. Chem. Ecol. 27:1691–1700.Google Scholar
  43. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 2002. Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum). J. Agric. Food Chem. 50:4567–4571.Google Scholar
  44. Zuniga, G. E., Copaja, S. V., Bravo, H. R., and Argandona, V. H. 1990. Hydroxamic acids accumulation by wheat callus. Phytochemistry 29:2139–2141.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Zhiqun Huang
    • 1
  • Terry Haig
    • 2
    • 3
  • Hanwen Wu
    • 2
  • Min An
    • 2
    • 4
  • Jim Pratley
    • 2
  1. 1.Institute of Applied Ecology, The Chinese Academy of SciencesShenyangChina
  2. 2.Farrer Centre for Sustainable Food and Fibre ProductionCharles Sturt University, WaggaWaggaAustralia
  3. 3.School of Science & TechnologyCharles Sturt University, WaggaWaggaAustralia
  4. 4.Environmental & Analytical LaboratoriesCharles Sturt University, WaggaWaggaAustralia

Personalised recommendations