Advertisement

Positivity

, Volume 7, Issue 3, pp 257–265 | Cite as

Fixed Point Theorems and a New System of Multivalued Generalized Order Complementarity Problems*

  • Nan-Jing Huang
  • Ya-Ping Fang
Article

Abstract

Some new fixed point and coupled fixed point theorems for multivalued increasing type mappings are obtained and a new system of multivalued generalized order complementarity problems is introduced in this paper. In terms of new fixed point and coupled fixed point theorems, we give some existance results of solutions for this new system of multivalued generalized order complementarity problems. The results presented in this paper extend and improve the corresponding results announced by Isac and Kostreva.

Multivated increasing type mapping fixed point coupled fixed point multivalued generalized order complementarity problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cottle, R.W., Pang, J.S. and Stone, R.E.: The Linear Complementarity Problems, Academic Press, New York, 1992.Google Scholar
  2. 2.
    Isac, G., Complementairity Problems, Lecture Notes in Mathematics, Springer-Verlag 1528, 1992.Google Scholar
  3. 3.
    Isac, G., Bulavski, V., and Kalashnikov, V.,Exceptional family, topological degree and complementarity problems, J. Global Optim. 10 (1997), 207–225.Google Scholar
  4. 4.
    Isac, G. and Kosetreva, M., The generalized order complementarity problem, J. Optium. Theory Appl. 3 (1991), 517–534.Google Scholar
  5. 5.
    Isac, G. and Kosetreva, M., Kneser's theorem and the multivalued generalized order complementarity problem, Appl. Math. Lett. 4 (6) (1991), 81–85.Google Scholar
  6. 6.
    Kosetreva, M.M., Recent results on compementarity models for engineering and economics, INFOR 28(1990), 324–334.Google Scholar
  7. 7.
    Kneser, H., Ein direkte Ableitung des zornschen lemma aus dem Auswahlaxiom, Math. Z. 53 (1950), 110–113.Google Scholar
  8. 8.
    Murty, K.G., Linear Complementarity, Linear and Nonlinear Programming, Hildermann, West Berlin, 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Nan-Jing Huang
    • 1
  • Ya-Ping Fang
    • 1
  1. 1.Department of MathematicsSichuan UniversitySichuanP.R. China

Personalised recommendations