Journal of Applied Spectroscopy

, Volume 70, Issue 4, pp 537–544 | Cite as

Collisional Relaxation of Luminescence Anisotropy in Rarefied Gases in the Condensed Phase

  • A. P. Blokhin
  • M. F. Gelin


The orientational relaxation of optically induced anisotropy in rarefied gases and at a damped rotation has been investigated. It has been found that the anisotropy relaxation in rarefied gases is described by a reduced kinetic equation depending only on free rotation integrals. The behavior of the integral anisotropy of luminescence for free symmetric and asymmetric top molecules has been elucidated. The law of luminescence depolarization has been obtained for asymmetric top molecules in the Gordon J-diffusion model. It represents the sum of two Stern–Volmer-type dependences, whose relative contribution is determined by the orientation of the dipole moments of transitions with absorption and emission of light in the molecular coordinate system and by the principal moments of inertia of the molecular top. It has been established that in the limit of a strongly damped rotation, kinetic equations of the general form reduce to equations of rotational diffusion. A number of modified diffusion equations correctly describing the contribution of inertial effects to the orientational relaxation of anisotropy have been obtained.

luminescence depolarization kinetic equations rarefied gas rotational diffusion inertial effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Blokhin and M. F. Gelin, Zh. Prikl. Spektrosk., 70, 196-202 (2003).Google Scholar
  2. 2.
    A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotations in Gases and Liquids, Cambridge University Press, Cambridge (1994).Google Scholar
  3. 3.
    A. P. Blokhin and M. F. Gelin, Khim. Fiz., 13, No. 1, 14-20 (1994).Google Scholar
  4. 4.
    A. P. Blokhin and M. F. Gelin, Khim. Fiz., 16, No. 1, 39-49, 50-59 (1997).Google Scholar
  5. 5.
    R. E. D. McClung, J. Chem. Phys., 75, 5503-5513 (1981).Google Scholar
  6. 6.
    D. H. Lee, R. E. McClung, Chem. Phys., 112, 23-41 (1987).Google Scholar
  7. 7.
    A. G. Pierre and W. A. Steele, J. Chem. Phys., 57, 4638-4648 (1972).Google Scholar
  8. 8.
    A. P. Blokhin, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 2, 70-79 (1986).Google Scholar
  9. 9.
    A. P. Blokhin, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 4, 77-86 (1986).Google Scholar
  10. 10.
    Yu. M. Kagan and A. M. Afanas'ev, Zh. Éksp. Teor. Fiz., 41, 1536-1545 (1961).Google Scholar
  11. 11.
    A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovskii, S. A. Tikhomirov, and G. B. Tolstorozhev, Zh. Prikl. Spektrosk., 70, 66-72 (2003).Google Scholar
  12. 12.
    A. P. Blokhin and V. A. Tolkachev, Opt. Spektrosk., 51, No. 2, 278-284 (1981).Google Scholar
  13. 13.
    A. P. Blokhin, S. P. Pliska, and V. A. Tolkachov, Spectrosc. Lett., 18, 301-315 (1985).Google Scholar
  14. 14.
    R. E. D. McClung, Adv. Mol. Rel. Int. Proc., 10, No. 2, 83-169 (1977).Google Scholar
  15. 15.
    J. C. Leicknam and Y. Guissani, Mol. Phys., 42, 1105-1120 (1981).Google Scholar
  16. 16.
    T. E. Bull, J. Chem. Phys., 65, 4802-4815 (1976).Google Scholar
  17. 17.
    V. A. Gaisenok and A. M. Sarzhevskii, Anisotropy of Absorption and Luminescence of Polyatomic Molecules [in Russian], Minsk (1986).Google Scholar
  18. 18.
    V. A. Gaisenok, I. I. Zholnerevich, and A. M. Sarzhevskii, Opt. Spektrosk., 49, Issue 4, 714-718 (1980).Google Scholar
  19. 19.
    A. P. Blokhin, N. A. Borisevich, I. I. Kalosha, and V. A. Tolkachev, Dokl. Akad. Nauk SSSR, 238, No. 1, 123- 126 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. P. Blokhin
    • 1
  • M. F. Gelin
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations