, Volume 496, Issue 1–3, pp 199–205 | Cite as

Siboglinid evolution shaped by habitat preference and sulfide tolerance



Siboglinids are tube-dwelling annelids that inhabit marine reducing habitats such as anoxic mud bottoms, seeps and hydrothermal vents. As adults, they lack a functional digestive system and rely on chemoautotrophic microbial endosymbionts. Based on morphological analyses, Siboglinidae form a clade with the Sabellariidae, Serpulidae and Sabellidae within the Annelida. The sister group to this clade is the Oweniidae. Three subgroups constitute the Siboglinidae: Frenulata typically inhabit anoxic sediments, Sclerolinium (a.k.a., Monilifera) live on decaying organic matter or reduced sediments and Vestimentifera are mostly found at hydrocarbon seeps and hydrothermal vents. Recent studies suggest that Sclerolinum is the sister group to the Vestimentifera. Within the Vestimentifera, the species inhabiting bare-rock hydrothermal vents represent a derived clade. The seep-inhabiting genus Lamellibrachia forms a basal branch within the Vestimentifera. Trends in siboglinid evolution are most notable with regard to the level of sulfide tolerance and type of substrate. Basal groups inhabit soft substrate with only slightly elevated sulfide levels, whereas more derived species colonize hard substrate and tolerate elevated temperatures and high levels of sulfide. The type of substrate correlates with tube morphology and the function of the opisthosome. The role of the symbionts in habitat selection needs further investigation.

Vestimentifera Pogonophora Siboglinidae Sclerolinum vent seep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arp, A. J., J. J. Childress & R. D. Vetter, 1987. The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia pachyptila, is the extracellular haemoglobin. J. exp. Biol. 128: 139–158.Google Scholar
  2. Black, M. B., K. M. Halanych, P. A. Y. Maas, W. R. Hoeh, J. Hashimoto, D. Desbruyères, R. A. Lutz & R. C. Vrijenhoek, 1997. Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Mar. Biol. 130: 141–149.Google Scholar
  3. Bartolomaeus, T., 1995. Structure and formation of the uncini in Pectinaria koreni, Pectinaria auricoma (Terebellida) and Spirorbis spiorbis (Sabellida): implications for annelid phylogeny and the position of the Pogonophora. Zoomorphology 115: 161–177.Google Scholar
  4. Boore, J. L. & W. M. Brown, 2000. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol. Biol. Evol. 17: 87–106.PubMedGoogle Scholar
  5. Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch & J. B. Waterbury, 1981. Prokaryotic cells in the hydorthermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340–342.Google Scholar
  6. Childress, J. J. & C. R. Fisher, 1992. The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbiosis. In Barnes, M. (ed.), Oceanography and Marine Biology Annual Review Vol. 30. Aberdeen University Press, Aberdeen: 337–441.Google Scholar
  7. Craddock, C., W. R. Hoeh, R. G. Gustafson, R. A. Lutz, J. Hashimoto & R. J. Vrijenhoek, 1995. Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar. Biol. 121: 477–485.Google Scholar
  8. Dando, P. R., A. J. Southward, E. C. Southward, D. R. Dixon, A. Crawford & M. Crawford, 1992. Shipwrecked tubeworms. Nature 356: 667.Google Scholar
  9. Felbeck, H, 1981. Chemoautotrophic potential of the hydrothermal vent tubeworm Riftia pachyptila. Science 213: 336–338.Google Scholar
  10. Feldman, R.A., M. B. Black, C. S. Cary, R.A. Lutz & R. C. Vrijenhoek, 1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol. Mar. Bio. Biotechnol. 6: 268–277.Google Scholar
  11. Fisher, C. R., 1996. Ecophysiology of primary production at deepsea vents and seeps. In Uiblein, F., J. Ott & M. Stachowtisch (eds), Deep-Sea and Extreme Shallow-Water Habitats: Affinities and Adaptations. Biosystematics and Ecology Series Vol. 11: 313–336.Google Scholar
  12. Green, A. W., T. Gotoh, T. Suzuki, F. Zal, F. H. Lallier, A. Toulmond & S. N. Vinogradov, 2001. Observations of large, noncovalent globin subassemblies in the appr. 3600 KDa hexagonal bilayer hemoglobins by electrospray ionization time-of-flight spectrometry. J. Mol. Biol. 309: 553–560.PubMedGoogle Scholar
  13. Halanych, K. M., R. A. Lutz & R. C. Vrijenhoek, 1998. Evolutionary origins and age of vestimentiferan tube-worms. Cah. Biol. Mar. 39: 355–358.Google Scholar
  14. Halanych, K. M., R. A. Feldman & R. C. Vrijenhoek, 2001. Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not frenulate pogonophorans (Siboglinidae, Annelida). Biol. Bull. 201: 65–75.PubMedGoogle Scholar
  15. Hutchings, P. A., 2000. Familiy Oweniidae. In Beesley, P. L., G. J. B. Ross & C. J. Glasby (eds), Polychaetes and Allies: The Southern Synthesis. Fauna of Australia Vol. 4A. CSIRO Publishing, Melbourne: 173–176.Google Scholar
  16. Ivanov, A. V., 1963. Pogonophora. Academic Press, London. 479 pp.Google Scholar
  17. Jones, M. L., 1981. Riftia pachyptila, new genus, new species, the vestimentiferan from the Galapagos Rift geothermal vents (Pogonophora). Proc. natl. Acad. Sci. 93: 1295–1313.Google Scholar
  18. Jones, M. L., 1985. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bull. Biol. Soc. Wash. 6: 117–185.Google Scholar
  19. Kojima, S., T. Hashimoto, M. Hasegawa, S. Murata, S. Ohta, H. Seki & N. Okada, 1993. Close phylogenetic relationship between Vestimentifera (tube worms) and Annelida revealed by the amino acid sequence of elongation factor-1?. J. Mol. Evol. 37: 66–70.PubMedGoogle Scholar
  20. Main, M. B. & W. G. Nelson, 1988. Tolerance of the Sabellariid polychaete Phragmatopoma lapidosa Kinberg to burial, turbidity and hydrogen sulfide. Mar. Environ. Res. 26: 39–55.Google Scholar
  21. McHugh, D., 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. natl. Acad. Sci. U.S.A. 94: 8006–8009.PubMedGoogle Scholar
  22. Newman, W. A., 1985. The abyssal hydrothermal vent invertebrate fauna: a glimpse of antiquity? Bull. Biol. Soc.Wash. 6: 231–242.Google Scholar
  23. Peek, A. S., R. G. Gustafson & R. C. Vrijenhoek, 1997. Evolutionary relationships of deep-sea hydrothermal vent and coldwater seep clams (Bivalvia: Vesicomyidae): results from the mitochondrial cytochrome oxidase subunit I. Mar. Biol. 130: 151–161.Google Scholar
  24. Powell, M. A. & G. N. Somero, 1983. Blood components prevent sulfide poisoning of respiration of the hydrothermal vent tubeworm. Science 219: 297–299.Google Scholar
  25. Rau, G. H., 1981. Hydrothermal vent clam and vent tubeworm 13C/12C: further evidence of a nonphotosynthetic food source. Science 213: 338–339.Google Scholar
  26. Rouse, G., 2001. A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera. Zool. J. linn. Soc. 132: 55–80.Google Scholar
  27. Rouse, G. & K. Fauchald, 1995. The articulation of annelids. Zool. Scr. 24: 269–301.Google Scholar
  28. Rouse, G. & K. Fauchald, 1997. Cladistics and the polychaetes. Zool. Scr. 26: 139–204.Google Scholar
  29. Schulze, A. in press. Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology. Zool. Scr.Google Scholar
  30. Scott, K. M. & C. R. Fisher, 1995. Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tube worms. Am. Zool. 35: 102–111.Google Scholar
  31. Shank, T., M. B. Black, K. M. Halanych, R. A. Lutz & R. C. Vrijenhoek, 1999. Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit 1. Mol. Phylogenet. Evol. 13: 244–254.PubMedGoogle Scholar
  32. Sibuet, M. & K. Olu, 1998. Biogeography, biodiversity, and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res. II 45: 517–567.Google Scholar
  33. Smith, R. P., R. C. Cooper, T. Engen, E. R. Hendrickson, M. Katz, T. H. Milby, J. B. Mudd, A. T. Rossano & J. Redmund Jr., 1979. Hydrogen Sulfide. University Park Press, Baltimore. 183 pp.Google Scholar
  34. Southward, A. J., & E. C. Southward, 1981. Dissolved organic matter and the nutrition of the Pogonophora: a reassessment based on recent studies of their morphology and biology. Kieler Meeresforsch. 5: 445–453.Google Scholar
  35. Southward, E. C., 1972. On some Pogonophora from the Caribbean and the Gulf of Mexico. Bull. mar. Sci. 22: 739–776.Google Scholar
  36. Southward, E. C., 1988. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): Implications for the relationship between Vestimentifera and Pogonophora. J. mar. biol. Ass. U.K. 68: 465–487.Google Scholar
  37. Southward, E. C., 1993. Pogonophora. In Harrison, F. W. & Rice, M. E. (eds), Onychophora, Chilopoda, and Lesser Protostomata. Microscopic Anatomy of the Invertebrates Vol. 12, Wiley-Liss (NY): 327–369.Google Scholar
  38. Southward, E. C., 1999. Development of Perviata and Vestimentifera (Pogonophora). Hydrobiologia 402: 185–202.Google Scholar
  39. Southward, E. C., 2000. Class Pogonophora. In P. L. Beesley, G. J. B. Ross & C. J. Glasby (eds), Polychaetes and Allies: The Southern Synthesis. Fauna of Australia Vol. 4A. CSIRO Publishing, Melbourne: 331–351.Google Scholar
  40. Suzuki, T., T. Takagi, T. Furokohri & S. Ohta, 1989. The deepsea tube worm hemoglobin: subunit structure and phylogenetic relationship with annelid hemoglobin. Zool. Scr. 6: 915–926.Google Scholar
  41. Suzuki, T., T. Takagi & S. Ohta, 1993. N-Terminal amino acid sequences of 440 kDa hemoglobins of the deep-sea tube worms, Lamellibrachia sp.1, Lamellibrachia sp. 2 and slender vestimentifera gen. sp. 1 evolutionary relationship with annelid hemoglobins. Zool. Sci. 10: 141–146.PubMedGoogle Scholar
  42. Terwilliger, R. C., N. B. Terwilliger, G. M. Hughes, A. J. Southward & E. C. Southward, 1987. Studies on the haemoglobins of the small Pogonophora. J. mar. biol. Ass. U.K. 67: 219–234.Google Scholar
  43. Tunnicliffe, V., 1988. Biogeography and evolution of hydrothermalvent fauna in the eastern Pacific Ocean. Proc. r. Soc. Lond. B 233: 347–366.Google Scholar
  44. Tunnicliffe, V., A. G. McArthur. & D. McHugh, 1998. A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv. mar. Biol. 34: 353–442.Google Scholar
  45. Uschakov, P. V., 1933. Eine neue Form aus der Familie Sabellidae (Polychaeta). Zool. Anz. 104: 205–208.Google Scholar
  46. Van der Land, J. & A. Nørrevang, 1975. The systematic position of Lamellibrachia (Annelida, Vestimentifera). Z. zool. Syst. Evol.-forsch., Sonderheft 1: 86–101.Google Scholar
  47. Van Dover, C. L., 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton (NJ). 424 pp.Google Scholar
  48. Warren, L. M. & R. P. Dales, 1980. Glucose degradation in the polychaete annelid Owenia fusiformis Delle Chiaje under anaerobic conditions. Comp. Biochem. Phys. 65B: 443–445.Google Scholar
  49. Webb, M., 1964. The posterior extremity of Siboglinum fiordicum (Pogonophora). Sarsia 15: 33–36.Google Scholar
  50. Webb, M., 1969. Lamellibrachia barhami, gen. nov., spec. nov. (Pogonophora) from the Northeast Pacific. Bull. mar. Sci. 19: 18–47.Google Scholar
  51. Weber, R. E., 1980. Functions of invertebrate hemoglobins with special reference to adaptations to envrionmental hypoxia. Am. Zool. 20: 79–101.Google Scholar
  52. Wells, R. G. M., R. P. Dales & L. M. Warren, 1981. Oxygen equilibrium characteristics of the erythrocruorin (extracellular hemoglobin) from Owenia fusiformis Delle Chiaje (Polychaeta: Oweniidae). Comp. Biochem. Physiol. A70: 11–113.Google Scholar
  53. Williams, N. C., D. R. Dixon, E. C. Southward & P. W. H. Holland, 1993. Molecular evolution and diversification of the vestimentiferan tube worms. J. mar. biol. Ass. U.K. 73: 437–452.Google Scholar
  54. Young, C. M., E. Vázquez, A. Metaxas & P. A. Tyler, 1996. Embryology of vestimentiferan tube worms from deep-sea methane/ sulphide seeps. Nature 381: 514–516.Google Scholar
  55. Yuasa, H. J., B. N. Green, T. Takagi, N. Suzuki, S. N. Vinogradov & T. Suzuki, 1996. Electrospray ionization mass spectrometric composition of the 400 kDa hemoglobin from the pogonophoran Oligobrachia mashikoi and the primary structures of three major globin chains. Biochim. Biophys. Acta 1296: 235–244.PubMedGoogle Scholar
  56. Zal, F., F. H. Lallier, B. N. Green, S. N. Vinogradov & A. Toulmond, 1996. The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. J. Biol. Chem. 271: 8875–8881.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Systematic Biology, National Museum of Natural History, MRC 16Smithsonian InstitutionWashington, DCU.S.A.
  2. 2.Department of Invertebrate ZoologyHarvard University, MCZCambridgeU.S.A

Personalised recommendations