Space Science Reviews

, Volume 108, Issue 1–2, pp 81–93 | Cite as

II: SOLID EARTH PHYSICS: Long Wavelength Sea Level and Solid Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux

  • M. E. Tamtsiea
  • J. X. Mitrovica
  • J. L. Davis
  • G. A. Milne


Rapid ice mass variations within the large polar ice sheets lead to distinct and highly non-uniform sea-level changes that have come to be known as ‘sea-level fingerprints’. We explore in detail the physics of these fingerprints by decomposing the total sea-level change into contributions from radial perturbations in the two bounding surfaces: the geoid (or sea surface) and the solid surface. In the case of a melting event, the sea-level fingerprint is characterized by a sea-level fall in the near-field of the ice complex and a gradually increasing sea-level rise (from 0.0 to 1.3 times the eustatic value) as one considers sites at progressively greater distances (up to ≈ 90° or so) from the ice sheet. The far-field redistribution is largely driven by the relaxation of the sea-surface as the gravitational pull of the ablating ice sheet weakens. The near-field sea-level fall is a consequence of both this relaxation and ocean-plus-ice unloading of the solid surface. We argue that the fingerprints provide a natural explanation for geographic variations in sea-level (e.g., tide gauge, satellite) observations. Therefore, they furnish a methodology for extending traditional analyses of these observations to estimate not only the globally averaged sea-level rate but also the individual contributions to this rate (i.e., the sources).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cabanes, C., A. Cazenave, and C. Le Provost: 2001, ‘Sea level rise during past 40 years determined from satellite and in situ observations’. Science, 294, 840-842.CrossRefADSGoogle Scholar
  2. Clark, J. A. and J. A. Primus: 1987, ‘Sea-level changes resulting from future retreat of ice sheets: an effect of CO2 warming of the climate’. In: M. J. Tooley and I. Shennan (eds.): Sea-Level Changes. Institute of British Geographers, London, United Kingdom, pp. 356-370.Google Scholar
  3. Conrad, C., and B. H. Hager: 1997, ‘Spatial variations in the rate of sea level rise caused by present-day melting of glaciers and ice sheets’. Geophys. Res. Lett., 24, 1503-1506.CrossRefADSGoogle Scholar
  4. Davis, J. L., and J. X. Mitrovica: 1996, ‘Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America’. Nature, 379, 331-333.CrossRefADSGoogle Scholar
  5. Douglas, B. C.: 1991, ‘Global sea level rise’. J. Geophys. Res., 96, 6981-6992.ADSGoogle Scholar
  6. Douglas, B. C.: 1992, ‘Global sea level acceleration’. J. Geophys. Res., 97, 12699-12706.ADSGoogle Scholar
  7. Douglas, B. C.: 1997, ‘Global sea level rise: A redetermination’. Surv. Geophys., 18, 279-292.CrossRefADSGoogle Scholar
  8. Dziewonski, A. M., and D. L. Anderson: 1981, ‘Preliminary reference Earth model (PREM)’. Phys. Earth Planet. Inter., 25, 297-356.CrossRefADSGoogle Scholar
  9. Farrell, W. E., and J. T. Clark: 1976, ‘On postglacial sea level’. Geophys. J. R. astr. Soc., 46, 647-667.Google Scholar
  10. Gornitz, V.: 1995, ‘Sea level rise: A review of recent past and near-future trends’. Earth Surface Processes and Landforms, 20, 7-20.Google Scholar
  11. Gregory, J. M., and J. A. Lowe: 2000. ‘Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment’. Geophys. Res. Lett., 27, 3069-3072.CrossRefADSGoogle Scholar
  12. Intergovernmental Panel on Climate Change: 2001, Climate Change 2001: The Scientific Basis, The Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK.Google Scholar
  13. Lambeck, K, C. Smither, and P. Johnston: 1998, ‘Sea-level change, glacial rebound and mantle viscosity for northern Europe’. Geophys. J. Int., 134, 102-144.CrossRefADSGoogle Scholar
  14. Levitus, S., J.L. Antonov, T.P. Boyer, and C. Stephen: 2000, ‘Warming of the global ocean’. Science, 287, 2225-2229.CrossRefADSGoogle Scholar
  15. Meier, M. F.: 1984, ‘Contribution of small glaciers to global sea level’. Science, 226, 1418-1421.ADSGoogle Scholar
  16. Milne, G. A.: 1998, ‘Refining models of the glacial isostatic adjustment process’. Ph. D. thesis, University of Toronto, Toronto.Google Scholar
  17. Milne, G. A., J. X. Mitrovica, and J. L. Davis: 1999, ‘Near-field hydro-isostasy: The implementation of a revised sea-level equation’. Geophys. J. Int., 139, 464-482.CrossRefADSGoogle Scholar
  18. Mitrovica, J. X., and J. L. Davis: 1995, ‘Present-day post-glacial sea level change far from the Late Pleistocene ice sheets: Implications for recent analyses of tide gauge records’. Geophys. Res. Lett., 22, 2529-2532.CrossRefADSGoogle Scholar
  19. Mitrovica, J. X., and W. R. Peltier: 1991, ‘On postglacial geoid subsidence over the equatorial oceans’. J. Geophys. Res., 96, 20053-20071.ADSGoogle Scholar
  20. Mitrovica, J. X., M. Tamisiea, J. L. Davis, and G. A. Milne: 2001, ‘Polar ice mass variations and the geometry of global sea level change’. Nature, 409, 1026-1029.CrossRefADSGoogle Scholar
  21. Munk, W.: 2002, ‘Twentieth century sea level: An enigma’. Proc. Nat. Acad. Sci., 99, 6550-6555.CrossRefADSGoogle Scholar
  22. Nakiboglu, S. M., and K. Lambeck: 1991, ‘Secular sea-level change’. In: R. Sabadini, K. Lambeck and E. Boschi (eds.): Glacial Isostasy, Sea-Level and Mantle Rheology, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 237-258.Google Scholar
  23. Nerem, R. S: 1995, ‘Global mean sea level variations from TOPEX/POSEIDON altimeter data’. Science, 268, 708-710.ADSGoogle Scholar
  24. Peltier, W. R., and A. M. Tushingham: 1989, ‘Global sea level rise and the greenhouse effect: Might they be connected?’. Science, 244, 806-810.ADSGoogle Scholar
  25. Peltier, W. R., and A. M. Tushingham: 1991, ‘Influence of glacial isostatic adjustment on tide gauge measurements of secular sea level change’. J. Geophys. Res., 96, 6779-6796.ADSCrossRefGoogle Scholar
  26. Plag, H.-P., and H.-U. Jüttner: 2001, ‘Inversion of global tide gauge data for present-day ice load changes’. In: Proceedings of the Second International Symposium on Environmental Research in the Arctic and Fifth Ny-Alesund Scientific Seminar, Mem. Nat. Inst. Polar Res. Vol. 54, pp. 301-318.Google Scholar
  27. Shennan, I., and P. L. Woodworth: 1992, ‘A comparison of late Holocene and twentieth-century sea level trends from the UK and North Sea region’. Geophys. J. Int., 109, 96-105.ADSGoogle Scholar
  28. Tamisiea, M., J. X. Mitrovica, G. A. Milne, and J. L. Davis: 2001, ‘Global geoid and sea level changes due to present-day ice mass fluctuations’. J. Geophys. Res., 106, 30849-30863.CrossRefADSGoogle Scholar
  29. Trupin, A. S., and J. M. Wahr: 1990, ‘Spectroscopic analysis of global tide gauge sea level data’. Geophys. J. Int., 100, 441-453.ADSGoogle Scholar
  30. Woodward, R. S.: 1888, ‘On the form and position of mean sea level’, United States Geol. Survey Bull., 48, 87-170.Google Scholar
  31. Woodworth, P. L.: 1990, ‘A search for accelerations in records of European mean sea level’. Int. J. Climatology, 10, 129-143.ADSGoogle Scholar
  32. Woodworth, P. L., M. N. Tsimplis, R. A. Flather and I. Shennan: 1999, ‘A review of the trends observed in British Isles mean sea level data measured by tide gauges’. Geophys. J. Int., 136, 651-670.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. E. Tamtsiea
    • 1
  • J. X. Mitrovica
    • 2
  • J. L. Davis
    • 3
  • G. A. Milne
    • 3
  1. 1.University of ColoradoBoulderUSA
  2. 2.Department of PhysicsUniversity of TorontoGeorge St.Canada
  3. 3.Harvard Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations