Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets

  • Chantal Abergel
  • Bruno Coutard
  • Deborah Byrne
  • Sabine Chenivesse
  • Jean-Baptiste Claude
  • Céline Deregnaucourt
  • Thierry Fricaux
  • Celine Gianesini-Boutreux
  • Sandra Jeudy
  • Régine Lebrun
  • Caroline Maza
  • Cédric Notredame
  • Olivier Poirot
  • Karsten Suhre
  • Majorie Varagnol
  • Jean-Michel Claverie
Article

Abstract

With more than 100 antibacterial drugs at our disposal in the 1980’s, the problem of bacterial infection was considered solved. Today, however, most hospital infections are insensitive to several classes of antibacterial drugs, and deadly strains of Staphylococcus aureus resistant to vancomycin – the last resort antibiotic – have recently begin to appear. Other life-threatening microbes, such as Enterococcus faecalis and Mycobacterium tuberculosis are already able to resist every available antibiotic. There is thus an urgent, and continuous need for new, preferably large-spectrum, antibacterial molecules, ideally targeting new biochemical pathways. Here we report on the progress of our structural genomics program aiming at the discovery of new antibacterial gene targets among evolutionary conserved genes of uncharacterized function. A series of bioinformatic and comparative genomics analyses were used to identify a set of 221 candidate genes common to Gram-positive and Gram-negative bacteria. These genes were split between two laboratories. They are now submitted to a systematic 3-D structure determination protocol including cloning, protein expression and purification, crystallization, X-ray diffraction, structure interpretation, and function prediction. We describe here our strategies for the 111 genes processed in our laboratory. Bioinformatics is used at most stages of the production process and out of 111 genes processed – and 17 months into the project – 108 have been successfully cloned, 103 have exhibited detectable expression, 84 have led to the production of soluble protein, 46 have been purified, 12 have led to usable crystals, and 7 structures have been determined.

Escherichia coli Structural Genomics Comparative Genomics Bioinformatics anti-bacterial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., et al. (2000) Nature, 406, 959-964.Google Scholar
  2. 2.
    Cassell, G.H., and Mekalanos, J. JAMA 285, (2001) 601-605.Google Scholar
  3. 3.
    Projan, S. (2002) Curr. Opin. Pharmacol. 2, 513-522.Google Scholar
  4. 4.
    Clements, J.M., Beckett, R.P., Brown, A., Catlin, G., Lobell, M., Palan, S., Thomas, W., Whittaker, M., Wood, S., Salama, S., Baker, P.J., Rodgers, H.F., Barynin, V., Rice, D.W., and Hunter, M.G. (2001) Antimicrob. Agents Chemother. 45, 563-570.Google Scholar
  5. 5.
    Barbachyn, M.R., Brickner, S.J., Gadwood, R.C., Garmon, S.A., Grega, K.C., Hutchinson, D.K., Munesada, K., Reischer, R.J., Taniguchi, M., Thomasco, L.M., Toops, D.S., Yamada, H., Ford, C.W., and Zurenko, G.E. (1998) Adv. Exp. Med. Biol., 456, 219-238.Google Scholar
  6. 6.
    Johnson A.P. (2001) Curr. Opin. Investig. Drugs, 12, 1691-1701Google Scholar
  7. 7.
    Auckland, C., Teare, L., Cooke, F., Kaufmann, M.E., Warner, M., Jones, G., Bamford, K., Ayles, H., Johnson, A.P. (2002) J. Antimicrob. Chemother. 50, 743-746.Google Scholar
  8. 8.
    Claverie, J.M. Nature, 2000, 403, 12-12.Google Scholar
  9. 9.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Nucleic Acids Res. 25, 3389-3402.Google Scholar
  10. 10.
    Rudd, K.E. (2000) Nucleic Acids Res. 28, 60-64.Google Scholar
  11. 11.
    Persson, B., and Argos, P. (1997) J. Protein Chem. 16, 453-457.Google Scholar
  12. 12.
    Hartley, J.L., Temple, G.F., and Brasch, M.A. (2000) Genome Res. 10, 1788-1795.Google Scholar
  13. 13.
    Monchois V., Vincentelli, R., Deregnaucourt, C., Abergel, C., and Claverie J.-M. (2002) In Cell-Free Translation Systems (Ed., Spirin, A.S.), Springer Verlag, New York, pp. 197-202.Google Scholar
  14. 14.
    Audic, S., Lopez, F., Claverie, J.-M., Poirot, O., and Abergel, C. (1997) Proteins 29, 252-257.Google Scholar
  15. 15.
    Monchois, V., Abergel, C., Sturgis, J., Jeudy, S., and Claverie, J.-M. (2001) J. Biol. Chem. 276, 18437-18441.Google Scholar
  16. 16.
    Bhat, T.N., Bourne, P., Feng, Z., Gilliland, G., Jain, S., Ravichandran, V., Schneider, B., Schneider, K., Thanki, N., Weissig, H., Westbrook, J., and Berman, H.M. (2001) Nucleic Acids Res. 29, 214-218.Google Scholar
  17. 17.
    Navaza, J. (2001) Acta Crystallogr. D57, 1367-1372.Google Scholar
  18. 18.
    Liu, Y., Ogata, C.M., and Hendrickson, W.A. (2001) Proc Natl Acad Sci U S A 98, 10648-10653.Google Scholar
  19. 19.
    Hendrickson, W.A., Horton, J.R., and LeMaster, D.M. (1990) EMBO J. 9, 1665-1672.Google Scholar
  20. 20.
    Abergel. C., Bouveret, E., Claverie, J.M., Brown, K., Riga, A., Lazdunski, C., and Benedetti, H. (1999) Structure Fold. Des. 7, 1291-1300.Google Scholar
  21. 21.
    Notredame, C., Higgins, D.G., Heringa, J. (2000) J. Mol. Biol. 302, 205-217.Google Scholar
  22. 22.
    Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J., Hofmann, K., and Bairoch, A. (2002) Nucleic Acids Res. 30, 235-238.Google Scholar
  23. 23.
    Notredame, C., and Abergel, C. (2003) In Bioinformatics and Genomes (Andrade, M.A., ed.) Horizon Scientific Press, Wymondham, UK, pp 27-49.Google Scholar
  24. 24.
    Abergel, C., Robertson, D.L., Claverie, J.-M. (1999) J. Virol. 73, 751-753.Google Scholar
  25. 25.
    Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeates, T.O., and Eisenberg, D. (1999) Nature 402, 83-86.Google Scholar
  26. 26.
    Enault, F., Suhre, K., Poirot, O., Abergel, C. and Claverie, J-M. (2003) Nucleic Acids Res., In press.Google Scholar
  27. 27.
    Madabushi, S., Yao, H., Marsh, M., Kristensen, D.M., Philippi, A., Sowa, M.E., and Lichtarge, O. (2002) J. Mol. Biol. 316, 139-154.Google Scholar
  28. 28.
    Klebe, G. (2000) J. Mol. Med. 78, 269-281.Google Scholar
  29. 29.
    Apostolakis, J., and Caflisch, A. (1999) Comb Chem High Throughput Screen. 2, 91-104.Google Scholar
  30. 30.
    Sali, A., and Blundell, T. L. (1993) J. Mol. Biol. 234, 779-815.Google Scholar
  31. 31.
    Kraulis, P.J. (1991) J. Appl. Crystallogr. 24, 946-950.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Chantal Abergel
    • 1
  • Bruno Coutard
    • 1
  • Deborah Byrne
    • 1
  • Sabine Chenivesse
    • 1
  • Jean-Baptiste Claude
    • 1
  • Céline Deregnaucourt
    • 1
  • Thierry Fricaux
    • 1
  • Celine Gianesini-Boutreux
    • 1
  • Sandra Jeudy
    • 1
  • Régine Lebrun
    • 2
  • Caroline Maza
    • 1
  • Cédric Notredame
    • 1
  • Olivier Poirot
    • 1
  • Karsten Suhre
    • 1
  • Majorie Varagnol
    • 1
  • Jean-Michel Claverie
    • 1
  1. 1.Structural and Genomic Information LaboratoryUMR 1889 CNRS-AVENTISFrance
  2. 2.Institute for Structural Biology and MicrobiologyMarseille cedex 20France

Personalised recommendations