Advertisement

Problems of Information Transmission

, Volume 39, Issue 3, pp 231–238 | Cite as

A Method for Fast Computation of the Fourier Transform over a Finite Field

  • P. V. Trifonov
  • S. V. Fedorenko
Article

Abstract

We consider the problem of fast computation of the Fourier transform over a finite field by decomposing an arbitrary polynomial into a sum of linearized polynomials. Examples of algorithms for the Fourier transform with complexity less than that of the best known analogs are given.

Keywords

Fourier Transform System Theory Finite Field Fast Computation Arbitrary Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Blahut, R.E., Theory and Practice of Error Control Codes, Reading, Massachusetts: Addison-Wesley, 1983. Translated under the title Teoriya i praktika kodov, ispravlyayushchikh oshibki, Moscow: Mir, 1986.Google Scholar
  2. 2.
    Truong, T.-K., Jeng, J.-H., and Reed, I.S., Fast Algorithm for Computing the Roots of Error Locator Polynomials up to Degree 11 in Reed-Solomon Decoders, IEEE Trans. Commun., 2001, vol. 49, no. 5, pp. 779–783.Google Scholar
  3. 3.
    Fedorenko, S.V. and Trifonov, P.V.,Finding Roots of Polynomials over Finite Fields, IEEE Trans. Commun., 2002, vol. 50, no. 11, pp. 1709–1711.Google Scholar
  4. 4.
    Berlekamp, E.R., Algebraic Coding Theory, New York: McGraw-Hill, 1968. Translated under the title Algebraicheskaya teoriya kodirovaniya, Moscow: Mir, 1971.Google Scholar
  5. 5.
    MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz', 1979.Google Scholar
  6. 6.
    Fedorenko, S. and Trifonov, P., On Computing the Fast Fourier Transform over Finite Fields, in Proc. 8th Int. Workshop on Algebraic and Combinatorial Coding Theory, Tsarskoe Selo, Russia, 2002, pp. 108–111.Google Scholar
  7. 7.
    Gabidulin, E.M. and Afanasyev, V.B., Kodirovanie v radioelektronike (Coding in Radio Electronics), Moscow: Radio i Svyaz', 1986.Google Scholar
  8. 8.
    Afanasyev, V.B. and Grushko, I.I., FFT Algorithms for the Fields GF(2m), in Pomekhoustoichivoe kodirovanie i nadezhnost' EVM (Error-Resistant Coding and Reliability of Computers), Moscow: Nauka, 1987, pp. 33–55.Google Scholar
  9. 9.
    Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of Computer Algorithms, Reading, Massachusetts: Addison-Wesley, 1976. Translated under the title Postroenie i analiz vychislitel'nykh algoritmov, Moscow: Mir, 1979.Google Scholar
  10. 10.
    Zakharova, T.G., Fourier Transform Evaluation in Fields of Characteristic 2, Probl. Peredachi Inf., 1992, vol. 28, no. 2, pp. 62–77 [Probl. Inf. Trans. (Engl. Transl.), 1992, vol. 28, no. 2, pp. 154167].Google Scholar
  11. 11.
    Wang, Y. and Zhu, X., A Fast Algorithm for the Fourier Transform over Finite Fields and Its VLSI Implementation, IEEE J. Select. Areas Commun., 1988, vol. 6, no. 3, pp. 572–577.Google Scholar
  12. 12.
    Afanasyev, V.B., On Complexity of FFT over Finite Field, in Proc. 6th Joint SwedishRussian Int. Workshop on Information Theory, Mölle, Sweden, 1993, pp. 315–319.Google Scholar
  13. 13.
    Blahut, R.E., Fast Algorithms for Digital Signal Processing, Reading, Massachusetts: Addison-Wesley, 1985. Translated under the title Bystrye algoritmy tsifrovoi obrabotki signalov, Moscow: Mir, 1989.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • P. V. Trifonov
    • 1
  • S. V. Fedorenko
    • 1
  1. 1.St. Petersburg State Polytechnic UniversityRussia

Personalised recommendations