3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

  • Irwin R.A. Menezes
  • Julio C.D. Lopes
  • Carlos A. Montanari
  • Glaucius Oliva
  • Fernando Pavão
  • Marcelo S. Castilho
  • Paulo C. Vieira
  • M^onica T. Pupo

Abstract

Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

Chagas' disease Coumarin natural products glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) CoMFA GRID/VolSurf/GOLPE. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organization Statistical Information System Website, at http://www.who.ch/whosis/whosis.html, on November 9th, 2002.Google Scholar
  2. 2.
    Coura, J.R., Castro, S.L., Mem. Inst. Oswaldo Cruz, 97 (2002) 3.Google Scholar
  3. 3.
    Fairlamb, A.H., Medicina-Buenos Aires, 59 (1999) 179.Google Scholar
  4. 4.
    Souza, D.H.F., Garratt, R.C., AraÚjo, A.P.U., Guimarães, B.G., Jesus, W.D.P., Michels, P.A.M., Hannaert, V., Oliva, G., FEBS Lett., 424 (1998) 131.Google Scholar
  5. 5.
    (a) Aronov, A.M., Verlinde, C.L.M.J., Hol, W.G.J., Gelb, M.H., J. Med. Chem., 41 (1998) 4790 (b) Verlinde, C.L.M.J., Bressic, J.C., Choea, J., Suresha, S., Bucknerd, F.S., Van Voorhisd, W.C., Michelsf, P.A.M., Gelbb, M.H., Hol, W.G.J., J. Braz. Chem. Soc., 13 (2002) 843.Google Scholar
  6. 6.
    Bressi, J.C., Verlinde, C.L.M.J., Aronov, A.M., Le Shaw, M., Shin, S.S., Nguyen, L.N., Suresh, S., Buckner, F.S., Van Voorhis, W.C., Kuntz, I.D., Hol, W.G.J., Gelb, M.H., J. Med. Chem., 44 (2001) 2080.Google Scholar
  7. 7.
    Vieira, P.C., Mafezoli, J., Pupo, M.T., Fernandes, J.B., da Silva, M. F.D.F., de Albuquerque, S., Oliva, G., Pavão, F., Pure Appl. Chem., 73 (2001) 617.Google Scholar
  8. 8.
    Montanari, C.A., Bolzani, V.S., Quim. Nova, 24 (2001) 105.Google Scholar
  9. 9.
    (a) Leitão, A., Montanari, C.A. and Donnici, C.L., Quim. Nova, 23, (2000) 178 (b) Gorse, D., Rees, A., Kaczorek, M., Lahana, R., DDT, 4 (1999) 257 (c) Duffieux, F., Van Roy, J., Michels, P.K.M., Opperdoes, F.R., J. Biol. Chem., 275 (2000) 27559.Google Scholar
  10. 10.
    Lyne, P.D., DDT 7, (2002) 1047.Google Scholar
  11. 11.
    Ewing, T.J.A., Kuntz, I.D.J., Comput. Chem. 18 (1997) 1175.Google Scholar
  12. 12.
    Pavao, F, Castilho, M.S., Pupo, M.T., Dias, R.L.A., Correa, A.G., Fernandes, J.B., da Silva, M.F.G.F., Mafezoli, J., Vieira, P.C., Oliva, O., FEBS Lett., 520 (2002) 13.Google Scholar
  13. 13.
    Monteiro, M.R., Vieira, P.C., Fernandes, J.B., da Silva, M.F.G.F., Pupo, M.T., Pavão, F., Oliva, G., Albuquerque, S., Mem. Inst. Oswaldo Cruz, Suppl. I, 92 (1997) 327.Google Scholar
  14. 14.
    Cramer, R.D., Patterson, D.E., Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.Google Scholar
  15. 15.
    Goodford, P.J., J. Med. Chem., 28 (1985) 849.Google Scholar
  16. 16.
    Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M., Wade, R.C., J. Med. Chem., 32 (1989) 1083.Google Scholar
  17. 17.
    Wade, R.C., Clark, K.J., Goodford, P.J., J. Med. Chem., 36 (1993) 140.Google Scholar
  18. 18.
    Sybyl 6.5, Tripos, Inc.Google Scholar
  19. 19.
    Cruciani, G., Crivori, P., Carrupt, P.-A., Testa, B., J. Mol. Struct. (Theochem.), 503 (2000) 17.Google Scholar
  20. 20.
    Nilson, J., Wikström, H., Smilde, A., Glase, S., Pugsley, T., Cruciani, G., Pastor, M., Clementi, S., J. Med. Chem., 40 (1997) 833.Google Scholar
  21. 21.
    Höskuldsson, A.J., Chemom., 2 (1988) 211.Google Scholar
  22. 22.
    Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., Clementi, S., Quant. Strut.-Act. Relat., 12 (1993) 9.Google Scholar
  23. 23.
    Pavão, F., Sci. Thesis, Chemistry Department, University of São Paulo, 1996.Google Scholar
  24. 24.
    Montanari, C.A., Tute, M.S., Beezer, A.E., Mitchell, J., J. Comput. Aided Mol. Des., 10 (1996) 67.Google Scholar
  25. 25.
    Cruciani, G., Pastor, M., Mannhold, R., J. Med. Chem., 45 (2002) 2685.Google Scholar
  26. 26.
    Cruciani, G., Pastor, M., Guba, W., Eur. J. Pharm. Sci., 11 (2000) S29.Google Scholar
  27. 27.
    Tarvainen, M., Satinen, R., Somppi, M., Paronen, P., Poso, A., Pharmaceut. Res., 18 (2001) 1760.Google Scholar
  28. 28.
    Filipponi, E., Cruciani, G., Tabarrini, O., Cecchetti, V., Fravolini, A., J. Comput. Aid. Mol. Des., 15 (2001) 203.Google Scholar
  29. 29.
    Oprea, T.I., Zamora, I., Ungell, A.L., J. Comb. Chem., 4 (2002) 258.Google Scholar
  30. 30.
    Ismael Zamora, I., Oprea, T., Cruciani, G., Pastor, M., Ungell, A.-L., J. Med. Chem., 46 (2003), 25.Google Scholar
  31. 31.
    Tomazela, D.M., Pupo, M.T., Passador, E.A.P., Da Silva, M.F.G.F., Vieira, P.C., Fernandes, J.B., Fo, E.R., Oliva, G., Pirani, J.R., Phytochemistry, 55 (2000) 643.Google Scholar
  32. 32.
    DeMarchi, A.A., Archanjo, F.C., Pupo, M.T., DelPonte, G., Castilho, M.S., Oliva, G., 25th Brazilian Chemical Society Meeting, Poços de Caldas, MG, Brazil, MD-023, 2002.Google Scholar
  33. 33.
    Montanari, M.L.C., Montanari, C.A., Gáudio, A.C., Quim. Nova, 25 (2002) 231.Google Scholar
  34. 34.
    Gáudio, A.C., Montanari, C.A., J. Comput. Aided Mol. Des., 16 (2002) 287.Google Scholar
  35. 35.
    Olsson, M.H.M., Ryde, U., Roos, B.O., Pierloot, K., J. Biol. Inorg. Chem., 3 (1998) 109.Google Scholar
  36. 36.
    Dong, S.L., Spiro, T.G., J. Am. Chem. Soc., 120 (1998) 10434.Google Scholar
  37. 37.
    Duan, G.L., Smith, V.H., Weaver, D.F., Mol. Phys., 99 (2001) 1689.Google Scholar
  38. 38.
    Thomas, G.J., Biopolymers, 67 (2002) 214.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Irwin R.A. Menezes
    • 1
  • Julio C.D. Lopes
    • 1
  • Carlos A. Montanari
    • 1
  • Glaucius Oliva
    • 2
  • Fernando Pavão
    • 2
  • Marcelo S. Castilho
    • 2
  • Paulo C. Vieira
    • 3
  • M^onica T. Pupo
    • 4
  1. 1.Núcleo de Estudos em Química Medicinal, NEQUIM. Chemistry DepartmentUniversity of Minas GeraisBelo Horizonte, MGBrazil
  2. 2.Laboratório de Cristalografìa de Proteínas e Biologia Estrutural, Instituto de Física de São CarlosUniversidade de São Paulo, USPSão Carlos, SPBrazil
  3. 3.Departamento de QuímicaUniversidade Federal de São CarlosSão Carlos, SPBrazil
  4. 4.Faculdade de Ci^encias Farmac^euticas de Ribeirão Preto, USPMonte Alegre, Ribeirão Preto, SPBrazil

Personalised recommendations