Comparative binding energy analysis of haloalkane dehalogenase substrates: Modelling of enzyme-substrate complexes by molecular docking and quantum mechanical calculations

  • Jan Kmuníček
  • Michal Boháč
  • Santos Luengo
  • Federico Gago
  • Rebecca C. Wade
  • Jiří Damborský


We evaluate the applicability of automated molecular docking techniques and quantum mechanical calculations to the construction of a set of structures of enzyme-substrate complexes for use in Comparative binding energy (COMBINE) analysis to obtain 3D structure-activity relationships. The data set studied consists of the complexes of eighteen substrates docked within the active site of haloalkane dehalogenase (DhlA) from Xanthobacter autotrophicus GJ10. The results of the COMBINE analysis are compared with previously reported data obtained for the same dataset from modelled complexes that were based on an experimentally determined structure of the DhlA-dichloroethane complex. The quality of fit and the internal predictive power of the two COMBINE models are comparable, but better external predictions are obtained with the new approach. Both models show a similar composition of the principal components. Small differences in the relative contributions that are assigned to important residues for explaining binding affinity differences can be directly linked to structural differences in the modelled enzyme-substrate complexes: (i) rotation of all substrates in the active site about their longitudinal axis, (ii) repositioning of the ring of epihalohydrines and the halogen substituents of 1,2-dihalopropanes, and (iii) altered conformation of the long-chain molecules (halobutanes and halohexanes). For external validation, both a novel substrate not included in the training series and two different mutant proteins were used. The results obtained can be useful in the future to guide the rational engineering of substrate specificity in DhlA and other related enzymes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ortiz, A.R., Pisabarro, M.T., Gago, F., and Wade, R.C., J. Med. Chem., 38 (1995) 2681.Google Scholar
  2. 2.
    Ortiz, A.R., Pastor, M., Palomer, A., Cruciani, G., Gago, F., and Wade, R.C., J. Med. Chem., 40 (1997) 1136.Google Scholar
  3. 3.
    Pastor, M., Perez, C., and Gago, F., J. Mol. Graph. Model., 15 (1997) 364.Google Scholar
  4. 4.
    Perez, C., Pastor, M., Ortiz, A.R., and Gago, F., J. Med. Chem., 41 (1998) 836.Google Scholar
  5. 5.
    Lozano, J.J., Pastor, M., Cruciani, G., Gaedt, K., Centeno, N.B., Gago, F., and Sanz, F., J. Comput.-Aid. Mol. Design, 14 (2000) 341.Google Scholar
  6. 6.
    Tomic, S., Nilsson, L., and Wade, C.R., J. Med. Chem., 43 (2000) 1780.Google Scholar
  7. 7.
    Cuevas, C., Pastor, M., Perez, C., and Gago, F., Combin. Chem. High Through. Screen., 4 (2001) 627.Google Scholar
  8. 8.
    Kmunicek, J., Luengo, S., Gago, F., Ortiz, A.R., Wade, R.C., and Damborsky, J., Biochemistry, 40 (2001) 8905.Google Scholar
  9. 9.
    Wade, R.C. 2001. Derivation of QSARs using 3D structural models of protein-ligand complexes by COMBINE analysis, In Holtje, H.-D. and Sippl, W. (eds.), Rational approaches to drug design: 13th European symposium on Quantitative Structure-Activity Relationships, Prous Science, Barcelona, p. 23.Google Scholar
  10. 10.
    Wang, T., and Wade, R.C., J. Med. Chem., 44 (2001) 961.Google Scholar
  11. 11.
    Wang, T., and Wade, R.C., J. Med. Chem., 45 (2002) 4828.Google Scholar
  12. 12.
    Damborsky, J., Kmunicek, J., Jedlicka, T., Luengo, S., Gago, F., Ortiz, A.R., and Wade, R.C. 2003. Rational re-design of haloalkane dehalogenases guided by comparative binding energy analysis, In Svendsen, A. (ed.), Enzyme functionality: design, engineering and screening, Marcel Dekker, New York, in press.Google Scholar
  13. 13.
    Verschueren, K.H.G., Seljee, F., Rozeboom, H.J., Kalk, K.H., and Dijkstra, B.W., Nature, 363 (1993) 693.Google Scholar
  14. 14.
    Newman, J., Peat, T.S., Richard, R., Kan, L., Swanson, P.E., Affholter, J.A., Holmes, I.H., Schindler, J.F., Unkefer, C.J., and Terwilliger, T.C., Biochemistry, 38 (1999) 16105.Google Scholar
  15. 15.
    Marek, J., Vevodova, J., Kuta-Smatanova, I., Nagata, Y., Svensson, L.A., Newman, J., Takagi, M., and Damborsky, J., Biochemistry, 39 (2000) 14082.Google Scholar
  16. 16.
    Damborsky, J., and Koca, J., Prot. Engng., 12 (1999) 989.Google Scholar
  17. 17.
    Schanstra, J.P., Kingma, J., and Janssen, D.B., J. Biol. Chem., 271 (1996) 14747.Google Scholar
  18. 18.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.Google Scholar
  19. 19.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucl. Acid Res., 28 (2000) 235.Google Scholar
  20. 20.
    Vriend, G., J. Mol. Graphics, 8 (1990) 52.Google Scholar
  21. 21.
    Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Ferguson, D.M., Radmer, R.J., Seibel, G.L., Singh, U.C., Weiner, P.K., and Kollman, P.A. AMBER 5.0, University of California, San Francisco (1997).Google Scholar
  22. 22.
    Solis, F.J., and Wets, R.J.B., Math. Oper. Res., 6 (1981) 19.Google Scholar
  23. 23.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.Google Scholar
  24. 24.
    Stewart, J.J.P., J. Comput.-Aid. Mol. Design, 4 (1990) 1.Google Scholar
  25. 25.
    Cernohorsky, M., Kuty, M., and Koca, J., Comp. Chem., 21 (1996) 35.Google Scholar
  26. 26.
    Damborsky, J., Prokop, M., and Koca, J., Trends Biochem. Sci., 26 (2001) 71.Google Scholar
  27. 27.
    Damborsky, J., Kuty, M., Nemec, M., and Koca, J., J. Chem. Inf. Comp. Sci., 37 (1997) 562.Google Scholar
  28. 28.
    Verschueren, K.H.G., Kingma, J., Rozeboom, H.J., Kalk, K.H., Janssen, D.B., and Dijkstra, B.W., Biochemistry, 32 (1993) 9031.Google Scholar
  29. 29.
    Kennes, C., Pries, F., Krooshof, G.H., Bokma, E., Kingma, J., and Janssen, D.B., Eur. J. Biochem., 228 (1995) 403.Google Scholar
  30. 30.
    Krooshof, G.H., Ridder, I.S., Tepper, A.W.J.W., Vos, G.J., Rozeboom, H.J., Kalk, K.H., Dijkstra, B.W., and Janssen, D.B., Biochemistry, 37 (1998) 15013.Google Scholar
  31. 31.
    Schindler, J.F., Naranjo, P.A., Honaberger, D.A., Chang, C.-H., Brainard, J.R., Vanderberg, L.A., and Unkefer, C.J., Biochemistry, 38 (1999) 5772.Google Scholar
  32. 32.
    Lightstone, F.C., Zheng, Y.-J., Maulitz, A.H., and Bruice, T.C., Proc. Natl. Acad. Sci. USA, 94 (1997) 8417.Google Scholar
  33. 33.
    Shurki, A., Strajbl, M., Villa, J., and Warshel, A., J. Am. Chem. Soc., 124 (2002) 4097.Google Scholar
  34. 34.
    Bohac, M., Nagata, Y., Prokop, Z., Prokop, M., Monincova, M., Koca, J., Tsuda, M., and Damborsky, J., Biochemistry, 41 (2002) 14272.Google Scholar
  35. 35.
    Devi-Kesavan, L.S., and Gao, J., J. Am. Chem. Soc., 125 (2003) 1532.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jan Kmuníček
    • 1
  • Michal Boháč
    • 1
  • Santos Luengo
    • 2
  • Federico Gago
    • 2
  • Rebecca C. Wade
    • 3
    • 4
  • Jiří Damborský
    • 1
  1. 1.National Centre for Biomolecular ResearchMasaryk UniversityBrnoCzech Republic
  2. 2.Department of PharmacologyUniversity of AlcaláAlcalá de Henares, MadridSpain
  3. 3.European Media Laboratory, Villa BoschHeidelbergGermany
  4. 4.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations