Advertisement

Applied Categorical Structures

, Volume 11, Issue 6, pp 521–541 | Cite as

Some Remarks on Finitary and Iterative Monads

  • Jiří Adámek
  • Stefan Milius
  • Jiří Velebil
Article

Abstract

For every locally finitely presentable category A we introduce finitary Kleisli triples on A and show that they bijectively correspond to finitary monads on A. We illustrate this on free monads and free iterative monads.

monad monoid Kleisli triple 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P., Adámek, J., Milius, S. and Velebil, J.: Infinite trees and completely iterative theories: A coalgebraic view, Theoretical Computer Science 300 (2003), 1–45.Google Scholar
  2. 2.
    Adámek, J.: Free algebras and automata realization in the language of categories, Commentationes Mathematicae Universitatis Carolinae 15 (1974), 589–602.Google Scholar
  3. 3.
    Adámek, J.: A description of terminal coalgebras and iterative theories, Electronic Notes in Theoretical Computer Science 82(1) (2003).Google Scholar
  4. 4.
    Adámek, J., Milius, S. and Velebil, J.: Free iterative theories: A coalgebraic view, Mathematical Structures in Computer Science 13 (2003), 259–320.Google Scholar
  5. 5.
    Adámek, J., Milius, S. and Velebil, J.: From iterative algebras to iterative theories, Preprint.Google Scholar
  6. 6.
    Adámek, J. and Rosický, J.: Locally Presentable and Accessible Categories, Cambridge University Press, 1994.Google Scholar
  7. 7.
    Barr, M.: Coequalizers and free triples, Mathematische Zeitschrift 116 (1970), 307–322.Google Scholar
  8. 8.
    Barr, M.: Terminal coalgebras in well-founded set theory, Theoretical Computer Science 124 (1994), 182–192.Google Scholar
  9. 9.
    Elgot, C. C.: Monadic computations and iterative algebraic theories, in H. E. Rose and J. C. Shepherdson (eds), Logic Colloqium' 73, North-Holland, 1975.Google Scholar
  10. 10.
    Elgot, C. C., Bloom, S. L. and Tindell, R.: On the algebraic structure of rooted trees, Journal of Computer and Systems Sciences 16 (1978), 361–399.Google Scholar
  11. 11.
    Gabriel, P. and Ulmer, F.: Lokal präsentierbare Kategorien, Lecture Notes in Mathematics 221, Springer-Verlag, Berlin, 1971.Google Scholar
  12. 12.
    Kelly, M. and Power, J.: Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads, Journal of Pure and Applied Algebra 89 (1993), 163–179.Google Scholar
  13. 13.
    Manes, E. G.: Algebraic Theories, Springer-Verlag, Berlin, 1976.Google Scholar
  14. 14.
    Nelson, E.: Iterative algebras, Theoretical Computer Science 25 (1983), 67–94.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jiří Adámek
    • 1
  • Stefan Milius
    • 1
  • Jiří Velebil
    • 1
  1. 1.Institute of Theoretical Computer ScienceTechnical UniversityBraunschweigGermany

Personalised recommendations