Advertisement

Pharmaceutical Research

, Volume 20, Issue 10, pp 1626–1633 | Cite as

Enhancement of Solubility and Bioavailability of β-Lapachone Using Cyclodextrin Inclusion Complexes

  • Norased Nasongkla
  • Andy F. Wiedmann
  • Andrew Bruening
  • Meghan Beman
  • Dale Ray
  • William G. Bornmann
  • David A. Boothman
  • Jinming Gao
Article

Abstract

Purpose. To explore the use of cyclodextrins (CD) to form inclusion complexes with β-lapachone (β-lap) to overcome solubility and bioavailability problems previously noted with this drug.

Methods. Inclusion complexes between β-lap and four cyclodextrins (α-, β-, γ-, and HPβ-CD) in aqueous solution were investigated by phase solubility studies, fluorescence, and 1H-NMR spectroscopy. Biologic activity and bioavailability of β-lap inclusion complexes were investigated by in vitro cytotoxicity studies with MCF-7 cells and by in vivo lethality studies with C57Blk/6 mice (18-20 g).

Results. Phase solubility studies showed that β-lap solubility increased in a linear fashion as a function of α-, β-, or HPβ-CD concentrations but not γ-CD. Maximum solubility of β-lap was achieved at 16.0 mg/ml or 66.0 mM with HPβ-CD. Fluorescence and 1H-NMR spectroscopy proved the formation of 1:1 inclusion complexes between β-CD and HPβ-CD with β-lap. Cytotoxicity assays with MCF-7 cells showed similar biologic activities of β-lap in β-CD or HPβ-CD inclusion complexes (TD50 = 2.1 μM). Animal studies in mice showed that the LD50 value of β-lap in an HPβ-CD inclusion complex is between 50 and 60 mg/kg.

Conclusions. Complexation of β-lap with HPβ-CD offers a major improvement in drug solubility and bioavailability.

β-lapachone cyclodextrin inclusion complex solubility bioavailability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Marin, A. Lopex de Cerain, E. Hamilton, A. D. Lewis, J. M. Martinez-Penuela, M. A. Idoate, and J. Bello. DT-diaphorase and cytochrome B5 reductase in human lung and breast tumors. Br. J. Cancer 76:923-929 (1997).Google Scholar
  2. 2.
    A. M. Malkinson, D. Siegel, G. L. Forrest, A. F. Gazdar, H. K. Oie, D. C. Chan, P. A. Bunn, M. Mabry, D. J. Dykes, S. D. Harrison, and D. Ross. Elevated DT-diaphorase activity and messenger RNA content in human non-small cell lung carcinoma: relationship to the response of lung tumor xenografts to mitomycin Cl. Cancer Res. 52:4752-4757 (1992).Google Scholar
  3. 3.
    A. M. Malkinson. Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp. Lung Res. 24:541-555 (1998).Google Scholar
  4. 4.
    M. Belinsky and A. K. Jaiswal. NAD(P)H:quinone oxidoreductase1 (DT-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev. 12(2):103-117 (1993).Google Scholar
  5. 5.
    V. J. Stella and R. A. Rajewski. Cyclodextrins: Their future drug formulation and delivery. Pharm. Res. 14:556-567 (1997).Google Scholar
  6. 6.
    J. Szejtli. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98:1743-1753 (1998).Google Scholar
  7. 7.
    T. Loftsson and M. E. Brewster. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization, J Pharm Sci. 85:1017-1025 (1996).Google Scholar
  8. 8.
    R. A. Rajewski and V. J. Stella. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85:1142-1169 (1996).Google Scholar
  9. 9.
    T. Irie and K. Uekama. Pharmaceutical applications of cyclodextrins. 3. Toxicological issues and safety evaluation. J. Pharm. Sci. 86:147-162 (1997).Google Scholar
  10. 10.
    M. V. Rekharsky and Y. Inoue. Complexation thermodynamics of cyclodextrin. Chem. Rev. 98:1875-1917 (1998).Google Scholar
  11. 11.
    J. L. Lach and T. F. Chin. Interaction of pharmaceuticals with Schardinger dextrins III. J. Pharm. Sci. 53:69-73 (1964).Google Scholar
  12. 12.
    S. M. Planchon, S. Wuerzberger, B. Frydman, D. T. Witiak, P. Hutson, D. R. Church, G. Wilding, and D. A. Boothman. Beta-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response. Cancer Res. 55:3706-3711 (1995).Google Scholar
  13. 13.
    J. J. Pink, S. M. Planshon, C. Tagliarino, S. M. Wuerzberger-Davis, M. E. Varnes, D. Siegel, and D. A. Boothman. NAD(P)H:quinone oxidoreductase (NQO1) activity is the principal determinant of beta-lapachone cytoxicity. J. Biol. Chem. 275:5416-5424 (2000).Google Scholar
  14. 14.
    T. Higuchi and K. A. Connors. Phase solubility techniques. Adv. Anal. Chem. Instrum. 4:117-212 (1965).Google Scholar
  15. 15.
    A. Botsi, K. Yannakopoulou, B. Perly, and E. Hadjoudis. Positives or adverse effects of methylation on the inclusion behavior of cyclodextrins. A comparative NMR study using pheromone constituents of the olive fruit fly. J. Org. Chem. 60:4017-4023 (1995).Google Scholar
  16. 16.
    S. M. Wuerzberger, J. J. Pink, S. M. Planchon, K. L. Byers, W. G. Bornmann, and D. A. Boothman. Induction of apoptosis in MCF-7:WS8 breast cancer cells by beta-lapachone. Cancer Res. 58:1876-1885 (1998).Google Scholar
  17. 17.
    C. Labarca and K. Paigen. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102:344-352 (1980).Google Scholar
  18. 18.
    K. A. Connors. The stability of cyclodextrin complexes in solution. Chem. Rev. 97:1325-1357 (1997).Google Scholar
  19. 19.
    P. Adell, T. Parella, F. Sanchez-Ferrando, and A. Virgili. Clean selective spin-locking spectra using pulsed field gradients. J. Magn. Reson. 108:77-80 (1995).Google Scholar
  20. 20.
    Y. Ikeda, S. Motoune, T. Matsuoka, H. Arima, F. Hirayama, and K. Uekama. Inclusion complex formation of captopril with α-and β-cyclodextrins in aqueous solution: NMR spectroscopic and molecular dynamic studies. J. Pharm. Sci. 91:2390-2398 (2002).Google Scholar
  21. 21.
    V. Ramamurthy and D. F. Eaton. Photochemistry and photophysics within cyclodextrin cavities. Acc. Chem. Res. 21:300-306 (1988).Google Scholar
  22. 22.
    E. E. Sideris, G. N. Valsami, M. A. Koupparis, and P. E. Macheras. Determination of association constants in cyclodextrin/drug complexation using the Scatchard plot: application to β-cyclodextrin anilinonaphthalenesulfonates. Pharm. Res. 9:1568-1574 (1992).Google Scholar
  23. 23.
    C. Tagliarino, J. J. Pink, G. R. Dubyak, A. L. Nieminen, and D. A. Boothman. Calcium is a key signaling molecule in beta-lapachone-mediated cell death. J. Biol. Chem. 276:19150-19159 (2001).Google Scholar
  24. 24.
    C. J. Li, Y. Z. Li, A. V. Pinto, and A. B. Pardee. Potent inhibition of tumor survival in vivo by beta-lapachone plus taxol: combining drugs imposes different artificial checkpoints. Proc. Natl. Acad. Sci. USA 96:13369-13374 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Norased Nasongkla
    • 1
    • 2
  • Andy F. Wiedmann
    • 2
  • Andrew Bruening
    • 3
  • Meghan Beman
    • 3
  • Dale Ray
    • 4
  • William G. Bornmann
    • 5
  • David A. Boothman
    • 3
  • Jinming Gao
    • 2
  1. 1.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityCleveland
  2. 2.Department of Biomedical EngineeringCase Western Reserve UniversityCleveland
  3. 3.Departments of Radiation Oncology and PharmacologyCase Western Reserve UniversityCleveland
  4. 4.Cleveland Center for Structural BiologyCase Western Reserve UniversityCleveland
  5. 5.Preparative Synthesis Core FacilityMemorial Sloan Kettering Cancer CenterNew York

Personalised recommendations